1,169 research outputs found

    Role of persistent CMV infection in configuring T cell immunity in the elderly

    Get PDF
    Ageing is associated with declines in many physiological parameters, including multiple immune system functions. The rate of acceleration of the frequency of death due to cardiovascular disease or cancer seems to increase with age from middle age up to around 80 years, plateauing thereafter. Mortality due to infectious disease, however, does not plateau, but continues to accelerate indefinitely. The elderly commonly possess oligoclonal expansions of T cells, especially of CD8 cells, which, surprisingly, are often associated with cytomegalovirus (CMV) seropositivity. This in turn is associated with many of the same phenotypic and functional alterations to T cell immunity that have been suggested as biomarkers of immune system aging. Thus, the manner in which CMV and the host immune system interact is critical in determining the "age" of specific immunity. We may therefore consider immunosenescence in some respects as an infectious state. This implies that interventions aimed at the pathogen may improve the organ system affected. Hence, CMV-directed anti-virals or vaccination may have beneficial effects on immunity in later life

    DY determinants, possibly associated with novel class II molecules, stimulate autoreactive CD4+ T cells with suppressive activity

    Get PDF
    A set of T cell clones (TCC) isolated from HLA-DR-, Dw-, DQ-matched allogeneic MLCs was found to proliferate autonomously when stimulated with cells carrying a wide range of class I or II specificities. This apparently unrestricted proliferation was relatively weak, and only low levels of IL-2 were present in the supernatants of stimulated cells. Autologous as well as allogeneic PBMC and B lymphoblastoid cell lines (B-LCL) were capable of stimulating such clones, which were also restimulated by suppressive, but not by helper, TCC. Moreover, such clones displayed the unusual property of autostimulation. mAb inhibition experiments suggested that class II- or class II-restricted antigens were involved in stimulation. Thus, certain "broad" mAbs (TU39, SG520) reacting with multiple locus products inhibited activation of these reagents, but none of those reacting more specifically with DR (TU34, TU37, L243, Q2/70, SG157), DQ (TU22, SPV- L3, Leu 10), or DP (B7/21), or mixtures of these mAbs, were able to do so. Evidence from sequential immunoprecipitation experiments suggested that mAb TU39 bound class II-like molecules other than DR, DQ, and DP on TCC and B-LCL, and it is therefore proposed that such putative novel class II-like molecules may carry the stimulating determinants for these autoreactive clones. DY-reactive clones lacked helper activity for B cells but mediated potent suppressive activity on T cell proliferative responses that was not restricted by the HLA type of the responding cells. Suppressive activity was induced in normal PBMC by such clones, as well as by independent suppressive clones, which was also inhibited only by mAb TU39. These findings lead to the proposal that DY-reactive autostimulatory cells may constitute a self- maintaining suppressive circuit, the level of activity of which would be regulated primarily by the availability of IL-2 in the microenvironmen

    "Tolerization" of human T-helper cell clones by chronic exposure to alloantigen

    Get PDF
    Induction of clonal anergy in T-helper (Th) cells may have a role in regulating immune responses. A model system for studying Th cell tolerization at the clonal level in vitro could be useful for investigating the mechanisms involved. Accordingly, alloreactive helper cells were maintained in culture with interleukin 2 (IL 2) by intermittent stimulation with specific antigen. Regardless of the frequency of antigen stimulation, clones of age less than ca. 35 population doublings (PD) were found to undergo antigen-specific autocrine clonal expansion in the absence of exogenous IL 2. Such young clones (designated as phase I) could therefore not be "tolerized" by frequent exposure to antigen. In contrast, most clones of age greater than ca. 35 PD could be tolerized by frequent exposure to antigen (designated as phase II clones). Their autocrine proliferation was then blocked, although they still recognized antigen specifically as shown by their retained ability to secrete interferon-gamma (IFN-gamma) and granulocyte-macrophage colony stimulating factor (GM-CSF). The mechanism of response failure involved both an inability to upregulate IL 2 receptors in the absence of exogenous IL 2, as well as an inability to secrete IL 2. These defects were not overcome by stimulation with mitogens or calcium ionophore and phorbol esther in place of alloantigen. T-cell receptor, alpha, beta, and gamma-chain gene rearrangements remained identical in phase I and phase II clones. Tolerization of phase II clones could be avoided by increasing the period between antigen exposures. Despite this, whether or not phase II cells were capable of autocrine proliferation, they were found to have acquired the novel function of inducing suppressive activity in fresh lymphocytes. Suppressor-induction was blocked by the broadly reactive MHC class II-specific monoclonal antibody (moAb) TU39, but not by moAb preferentially reacting only with HLA-DR, DQ, or DP. Sequential immunoprecipitation on T-cell clones showed the presence of a putative non-DR, DQ, DP, TU39+ molecule on phase II clones. However, this molecule was also found on phase I clones. The nature of the TU39-blockable suppressor-inducing determinant present on phase II but not on (most) phase I clones thus remains to be clarified. In addition to suppressor-induction activity, phase II clones also acquired lytic potential as measured in a lectin approximation system. Cytotoxic (CTX) potential was also not influenced by the frequency of antigenic stimulation and could be viewed as a constitutive modulation of clonal functio

    Mechanisms of immunosenescence

    Get PDF
    On April 7,8, 2009 a Symposium entitled "Pathophysiology of Successful and Unsuccessful Ageing" took place in Palermo, Italy. Here, the lectures of G. Pawelec, D. Dunn-Walters and. G. Colonna-Romano on T and B immunosenescence are summarized. In the elderly, many alterations of both innate and acquired immunity have been described. Alterations to the immune system in the older person are generally viewed as a deterioration of immunity, leading to the use of the catch-all term immunosenescence. Indeed, many immunological parameters are often markedly different in elderly compared to young people, and some, mostly circumstantial, evidence suggests that retained function of both innate and acquired immunity in the elderly is correlated with health status. What is often not clear from studies is how far immune dysfunction is a cause or an effect. A better understanding of immunosenescence and mechanisms responsible for proven deleterious changes is needed to maintain a healthy state in later life and to design possible therapeutic interventions

    Seropositivity to cytomegalovirus, inflammation, all-cause and cardiovascular disease-related mortality in the United States

    Get PDF
    Background: Studies have suggested that CMV infection may influence cardiovascular disease (CVD) risk and mortality. However, there have been no large-scale examinations of these relationships among demographically diverse populations. The inflammatory marker C-reactive protein (CRP) is also linked with CVD outcomes and mortality and may play an important role in the pathway between CMV and mortality. We utilized a U.S. nationally representative study to examine whether CMV infection is associated with all-cause and CVD-related mortality. We also assessed whether CRP level mediated or modified these relationships. Methodology/Principal Findings: Data come from subjects ≥25 years of age who were tested for CMV and CRP level and were eligible for mortality follow-up on December 31st, 2006 (N = 14153) in the National Health and Nutrition Examination Survey (NHANES) III (1988-1994). Cox proportional hazard models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for all-cause and CVD-related mortality by CMV serostatus. After adjusting for multiple confounders, CMV seropositivity remained statistically significantly associated with all-cause mortality (HR 1.19, 95% CI: 1.01, 1.41). The association between CMV and CVD-related mortality did not achieve statistical significance after confounder adjustment. CRP did not mediate these associations. However, CMV seropositive individuals with high CRP levels showed a 30.1% higher risk for all-cause mortality and 29.5% higher risk for CVD-related mortality compared to CMV seropositive individuals with low CRP levels. Conclusions/Significance: CMV was associated with a significant increased risk for all-cause mortality and CMV seropositive subjects who also had high CRP levels were at substantially higher risk for both for all-cause and CVD-related mortality than subjects with low CRP levels. Future work should target the mechanisms by which CMV infection and low-level inflammation interact to yield significant impact on mortality

    Gene expression changes in long-term culture of T-cell clones: genomic effects of chronic antigenic stress in aging and immunosenescence

    Get PDF
    The adaptive immune response requires waves of T-cell clonal expansion on contact with altered self and contraction after elimination of antigen. In the case of persisting antigen, as occurs for example in cytomegalovirus or Epstein–Barr virus infection, this critical process can become dysregulated and responding T-cells enter into a dysfunctional senescent state. Longitudinal studies suggest that the presence of increased numbers of such T-cells is a poor prognostic factor for survival in the very elderly. Understanding the nature of the defects in these T-cells might facilitate intervention to improve immunity in the elderly. The process of clonal expansion under chronic antigenic stress can be modelled in vitro using continuously cultured T-cells. Here, we have used cDNA array technology to investigate differences in gene expression in a set of five different T-cell clones at early, middle and late passage in culture. Differentially expressed genes were confirmed by real-time polymerase chain reaction, and relationships between these assessed using Ingenuity Systems evidence-based association analysis. Several genes and chemokines related to induction of apoptosis and signal transduction pathways regulated by transforming growth factor β (TGFβ), epidermal growth factor (EGF), fos and β-catenin were altered in late compared to early passage cells. These pathways and affected genes may play a significant role in driving the cellular senescent phenotype and warrant further investigation as potential biomarkers of aging and senescence. These genes may additionally provide targets for intervention

    Endoscopic access closure for direct implantation of valved stents

    Get PDF
    OBJECTIVES: The off-pump trans left ventricular approach provides an alternative option for insertion of stented aortic valves of any size for endovascular replacement. One of the key steps in this procedure is the repair of the ventricle after catheter withdrawal. This study evaluates the reliability of a new device for sutureless and quick repair of the left ventricle access. METHODS: The Amplatz-nitinol occluder consists of two square heads that squeeze the ventricle wall between them thus sealing the ventricular defect. In four adult pigs weighing 55 kg, left thoracoscopy was performed to open the pericardium and visualise the cardiac apex. Following a heparin injection (100 U/kg) under ICUS and fluoroscopic control, we inserted a 30 F sheath into the epigastric area through the cardiac apex up into the left ventricle thus simulating the approach for an off-pump aortic valve replacement. The sheath was then removed and the ventricle closed with the occluder. Animals were followed-up for three hours; the haemodynamics and pericardial bleeding were recorded. The animals were then sacrificed and the gross anatomy of the heart was examined. RESULTS: The device was successfully deployed in four animals in less than one minute. ACT was above 200 seconds in all cases. All animals survived the procedure with a mean arterial pressure of 50 +/- 15 mm Hg. Bleeding during deployment was 80 +/- 20 ml and over a 3 hour period was 800 +/- 20 ml. Examination of the gross anatomy examination demonstrated the correct positioning of the device. CONCLUSIONS: The occluder is easy to use and the procedure is feasible and reproducible. However, the occluder design requires technical improvements in order to reduce bleeding before it can be used clinically

    Evidence for less marked potential signs of T-cell immunosenescence in centenarian offspring than in the general age-matched population

    Get PDF
    People may reach the upper limits of the human life span at least partly because they have maintained more appropriate immune function, avoiding changes to immunity termed "immunosenescence." Exceptionally long-lived people may be enriched for genes that contribute to their longevity, some of which may bear on immune function. Centenarian offspring would be expected to inherit some of these, which might be reflected in their resistance to immunosenescence, and contribute to their potential longevity. We have tested this hypothesis by comparing centenarian offspring with age-matched controls. We report differences in the numbers and proportions of both CD4(+) and CD8(+) early- and late-differentiated T cells, as well as potentially senescent CD8(+) T cells, suggesting that the adaptive T-cell arm of the immune system is more "youthful" in centenarian offspring than controls. This might reflect a superior ability to mount effective responses against newly encountered antigens and thus contribute to better protection against infection and to greater longevity

    Editorial

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Human aging is characterized by large differences between and within older adults. Numerous factors are known to contribute to these differences, including genetic and immunological, somatic and medical, cognitive and behavioral, psychosocial and experiential, as well as socioeconomic and geospatial conditions. Continuing and expanding the scientific objectives of the Berlin Aging Study, the Berlin Aging Study II (BASE-II) seeks to comprehensively describe phenomena associated with aging and old age and to better understand the multiple different underlying factors and their interactions. To this end, BASE-II was established as a multi-institutional project combining and integrating interdisciplinary perspectives ranging from molecular genetics and immunology, geriatric medicine and psychology, to sociology and economics. In this Special Issue, we have compiled seven empirical analyses that feature examples of interdisciplinary insights that BASE-II provides by linking data across multiple levels of analyses at which human functioning and development occur in old age. Here, we provide an overview of the study, note commonalities between BASE-II and earlier studies, and highlight some of its unique qualities.BMBF, 01UW0808, Die Berliner Altersstudie (BASE): Fortführung und Erweiterung (BASE II)BMBF, 16SV5537, Berliner Altersstudie II - BASE II - ; Teilvorhaben: Survey Methodik und SozialwissenschaftBMBF, 16SV5837, Berliner Altersstudie II - BASE II - ; Teilvorhaben: Projektkoordination, Datenbank und PsychologieBMBF, 16SV5538, Berliner Altersstudie II - BASE II - ; Teilvorhaben: MolekulargenetikBMBF, 16SV5536K, Berliner Altersstudie II - BASE II - ; Teilvorhaben: Innere Medizin/Geriatri
    corecore