1,589 research outputs found
Unambiguous state discrimination in quantum cryptography with weak coherent states
The use of linearly independent signal states in realistic implementations of
quantum key distribution (QKD) enables an eavesdropper to perform unambiguous
state discrimination. We explore quantitatively the limits for secure QKD
imposed by this fact taking into account that the receiver can monitor to some
extend the photon number statistics of the signals even with todays standard
detection schemes. We compare our attack to the beamsplitting attack and show
that security against beamsplitting attack does not necessarily imply security
against the attack considered here.Comment: 10 pages, 6 figures, updated version with added discussion of
beamsplitting attac
Photon tunneling through absorbing dielectric barriers
Using a recently developed formalism of quantization of radiation in the
presence of absorbing dielectric bodies, the problem of photon tunneling
through absorbing barriers is studied. The multilayer barriers are described in
terms of multistep complex permittivities in the frequency domain which satisfy
the Kramers--Kronig relations. From the resulting input--output relations it is
shown that losses in the layers may considerably change the photon tunneling
times observed in two-photon interference experiments. It is further shown that
for sufficiently large numbers of layers interference fringes are observed that
cannot be related to a single traversal time.Comment: 17 pages LaTeX, 9 figures (PS) include
Field quantization in inhomogeneous anisotropic dielectrics with spatio-temporal dispersion
A quantum damped-polariton model is constructed for an inhomogeneous
anisotropic linear dielectric with arbitrary dispersion in space and time. The
model Hamiltonian is completely diagonalized by determining the creation and
annihilation operators for the fundamental polariton modes as specific linear
combinations of the basic dynamical variables. Explicit expressions are derived
for the time-dependent operators describing the electromagnetic field, the
dielectric polarization and the noise term in the latter. It is shown how to
identify bath variables that generate the dissipative dynamics of the medium.Comment: 24 page
Oscillator model for dissipative QED in an inhomogeneous dielectric
The Ullersma model for the damped harmonic oscillator is coupled to the
quantised electromagnetic field. All material parameters and interaction
strengths are allowed to depend on position. The ensuing Hamiltonian is
expressed in terms of canonical fields, and diagonalised by performing a
normal-mode expansion. The commutation relations of the diagonalising operators
are in agreement with the canonical commutation relations. For the proof we
replace all sums of normal modes by complex integrals with the help of the
residue theorem. The same technique helps us to explicitly calculate the
quantum evolution of all canonical and electromagnetic fields. We identify the
dielectric constant and the Green function of the wave equation for the
electric field. Both functions are meromorphic in the complex frequency plane.
The solution of the extended Ullersma model is in keeping with well-known
phenomenological rules for setting up quantum electrodynamics in an absorptive
and spatially inhomogeneous dielectric. To establish this fundamental
justification, we subject the reservoir of independent harmonic oscillators to
a continuum limit. The resonant frequencies of the reservoir are smeared out
over the real axis. Consequently, the poles of both the dielectric constant and
the Green function unite to form a branch cut. Performing an analytic
continuation beyond this branch cut, we find that the long-time behaviour of
the quantised electric field is completely determined by the sources of the
reservoir. Through a Riemann-Lebesgue argument we demonstrate that the field
itself tends to zero, whereas its quantum fluctuations stay alive. We argue
that the last feature may have important consequences for application of
entanglement and related processes in quantum devices.Comment: 24 pages, 1 figur
Unambiguous State Discrimination of Coherent States with Linear Optics: Application to Quantum Cryptography
We discuss several methods for unambiguous state discrimination of N
symmetric coherent states using linear optics and photodetectors. One type of
measurements is shown to be optimal in the limit of small photon numbers for
any N. For the special case of N=4 this measurement can be fruitfully used by
the receiving end (Bob) in an implementation of the BB84 quantum key
distribution protocol using faint laser pulses. In particular, if Bob detects
only a single photon the procedure is equivalent to the standard measurement
that he would have to perform in a single-photon implementation of BB84, if he
detects two photons Bob will unambiguously know the bit sent to him in 50% of
the cases without having to exchange basis information, and if three photons
are detected, Bob will know unambiguously which quantum state was sent.Comment: 5 RevTeX pages, 2 eps figure
Security of quantum cryptography using balanced homodyne detection
In this paper we investigate the security of a quantum cryptographic scheme
which utilizes balanced homodyne detection and weak coherent pulse (WCP). The
performance of the system is mainly characterized by the intensity of the WCP
and postselected threshold. Two of the simplest intercept/resend eavesdropping
attacks are analyzed. The secure key gain for a given loss is also discussed in
terms of the pulse intensity and threshold.Comment: RevTeX4, 8pages, 7 figure
Dynamical Casimir effect without boundary conditions
The moving-mirror problem is microscopically formulated without invoking the
external boundary conditions. The moving mirrors are described by the quantized
matter field interacting with the photon field, forming dynamical cavity
polaritons: photons in the cavity are dressed by electrons in the moving
mirrors. The effective Hamiltonian for the polariton is derived, and
corrections to the results based on the external boundary conditions are
discussed.Comment: 12 pages, 2 figure
Experimental Demonstration of Optimal Unambiguous State Discrimination
We present the first full demonstration of unambiguous state discrimination
between non-orthogonal quantum states. Using a novel free space interferometer
we have realised the optimum quantum measurement scheme for two non-orthogonal
states of light, known as the Ivanovic-Dieks-Peres (IDP) measurement. We have
for the first time gained access to all three possible outcomes of this
measurement. All aspects of this generalised measurement scheme, including its
superiority over a standard von Neumann measurement, have been demonstrated
within 1.5% of the IDP predictions
Interference in dielectrics and pseudo-measurements
Inserting a lossy dielectric into one arm of an interference experiment acts
in many ways like a measurement. If two entangled photons are passed through
the interferometer, a certain amount of information is gained about which path
they took, and the interference pattern in a coincidence count measurement is
suppressed. However, by inserting a second dielectric into the other arm of the
interferometer, one can restore the interference pattern. Two of these
pseudo-measurements can thus cancel each other out. This is somewhat analogous
to the proposed quantum eraser experiments.Comment: 7 pages RevTeX 3.0 + 2 figures (postscript). Submitted to Phys. Rev.
- …