1,030 research outputs found

    Critical phase of a magnetic hard hexagon model on triangular lattice

    Full text link
    We introduce a magnetic hard hexagon model with two-body restrictions for configurations of hard hexagons and investigate its critical behavior by using Monte Carlo simulations and a finite size scaling method for discreate values of activity. It turns out that the restrictions bring about a critical phase which the usual hard hexagon model does not have. An upper and a lower critical value of the discrete activity for the critical phase of the newly proposed model are estimated as 4 and 6, respectively.Comment: 11 pages, 8 Postscript figures, uses revtex.st

    Zero-Temperature Phase Transitions of Antiferromagnetic Ising Model of General Spin on a Triangular Lattice

    Full text link
    We map the ground-state ensemble of antiferromagnetic Ising model of spin-S on a triangular lattice to an interface model whose entropic fluctuations are proposed to be described by an effective Gaussian free energy, which enables us to calculate the critical exponents of various operators in terms of the stiffness constant of the interface. Monte Carlo simulations for the ground-state ensemble utilizing this interfacial representation are performed to study both the dynamical and the static properties of the model. This method yields more accurate numerical results for the critical exponents. By varying the spin magnitude in the model, we find that the model exhibits three phases with a Kosterlitz-Thouless phase transition at 3/2<S_{KT}<2 and a locking phase transition at 5/2 < S_L \leq 3. The phase diagram at finite temperatures is also discussed.Comment: 15 pages, LaTeX; 10 figures in PostScript files; The revised version appears in PRB (see Journal-ref). New electronic address of first author, [email protected]

    Monte Carlo Study of the Anisotropic Heisenberg Antiferromagnet on the Triangular Lattice

    Full text link
    We report a Monte Carlo study of the classical antiferromagnetic Heisenberg model with easy axis anisotropy on the triangular lattice. Both the free energy cost for long wavelength spin waves as well as for the formation of free vortices are obtained from the spin stiffness and vorticity modulus respectively. Evidence for two distinct Kosterlitz-Thouless types of defect-mediated phase transitions at finite temperatures is presented.Comment: 8 pages, 10 figure

    Vortex ordering in fully-frustrated superconducting systems with dice lattice

    Full text link
    The structure and the degenracy of the ground state of a fully-frustrated XY-model are investigated for the case of a dice lattice geometry. The results are applicable for the description of Josephson junction arrays and thin superconducting wire networks in the external magnetic field providing half-integer number of flux quanta per plaquette. The mechanisms of disordering of vortex pattern in such systems are briefly discussed.Comment: 10 pages, 3 figure

    Calcium scoring using 64-slice MDCT, dual source CT and EBT: a comparative phantom study

    Get PDF
    Purpose Assessment of calcium scoring (Ca-scoring) on a 64-slice multi-detector computed tomography (MDCT) scanner, a dual-source computed tomography (DSCT) scanner and an electron beam tomography (EBT) scanner with a moving cardiac phantom as a function of heart rate, slice thickness and calcium density. Methods and materials Three artificial arteries with inserted calcifications of different sizes and densities were scanned at rest (0 beats per minute) and at 50–110 beats per minute (bpm) with an interval of 10 bpm using 64-slice MDCT, DSCT and EBT. Images were reconstructed with a slice thickness of 0.6 and 3.0 mm. Agatston score, volume score and equivalent mass score were determined for each artery. A cardiac motion susceptibility (CMS) index was introduced to assess the susceptibility of Ca-scoring to heart rate. In addition, a difference (Δ) index was introduced to assess the difference of absolute Ca-scoring on MDCT and DSCT with EBT. Results Ca-score is relatively constant up to 60 bpm and starts to decrease or increase above 70 bpm, depending on scoring method, calcification density and slice thickness. EBT showed the least susceptibility to cardiac motion with the smallest average CMS-index (2.5). The average CMS-index of 64-slice MDCT (9.0) is approximately 2.5 times the average CMS-index of DSCT (3.6). The use of a smaller slice thickness decreases the CMS-index for both CT-modalities. The Δ-index for DSCT at 0.6 mm (53.2) is approximately 30% lower than the Δ-index for 64-slice MDCT at 0.6 mm (72.0). The Δ-indexes at 3.0 mm are approximately equal for both modalities (96.9 and 102.0 for 64-slice MDCT and DSCT respectively). Conclusion Ca-scoring is influenced by heart rate, slice thickness and modality used. Ca-scoring on DSCT is approximately 50% less susceptible to cardiac motion as 64-slice MDCT. DSCT offers a better approximation of absolute calcium score on EBT than 64-slice MDCT when using a smaller slice thickness. A smaller slice thickness reduces the susceptibility to cardiac motion and reduces the difference between CT-data and EBT-data. The best approximation of EBT on CT is found for DSCT with a slice thickness of 0.6 mm

    Global Bethe lattice consideration of the spin-1 Ising model

    Full text link
    The spin-1 Ising model with bilinear and biquadratic exchange interactions and single-ion crystal field is solved on the Bethe lattice using exact recursion equations. The general procedure of critical properties investigation is discussed and full set of phase diagrams are constructed for both positive and negative biquadratic couplings. In latter case we observe all remarkable features of the model, uncluding doubly-reentrant behavior and ferrimagnetic phase. A comparison with the results of other approximation schemes is done.Comment: Latex, 11 pages, 13 ps figures available upon reques

    Discovery of a kleptoplastic 'dinotom' dinoflagellate and the unique nuclear dynamics of converting kleptoplastids to permanent plastids

    Get PDF
    A monophyletic group of dinoflagellates, called ‘dinotoms’, are known to possess evolutionarily intermediate plastids derived from diatoms. The diatoms maintain their nuclei, mitochondria, and the endoplasmic reticulum in addition with their plastids, while it has been observed that the host dinoflagellates retain the diatoms permanently by controlling diatom karyokinesis. Previously, we showed that dinotoms have repeatedly replaced their diatoms. Here, we show the process of replacements is at two different evolutionary stages in two closely related dinotoms, Durinskia capensis and D. kwazulunatalensis. We clarify that D. capensis is a kleptoplastic protist keeping its diatoms temporarily, only for two months. On the other hand, D. kwazulunatalensis is able to keep several diatoms permanently and exhibits unique dynamics to maintain the diatom nuclei: the nuclei change their morphologies into a complex string-shape alongside the plastids during interphase and these string-shaped nuclei then condense into multiple round nuclei when the host divides. These dynamics have been observed in other dinotoms that possess permanent diatoms, while they have never been observed in any other eukaryotes. We suggest that the establishment of this unique mechanism might be a critical step for dinotoms to be able to convert kleptoplastids into permanent plastids.info:eu-repo/semantics/publishedVersio

    Strong Coupling Quantum Gravity and Physics beyond the Planck Scale

    Get PDF
    We propose a renormalization prescription for the Wheeler-DeWitt equation of (3+1)-dimensional Einstein gravity and also propose a strong coupling expansion as an approximation scheme to probe quantum geometry at length scales much smaller than the Planck length. We solve the Wheeler-DeWitt equation to the second order in the expansion in a class of local solutions and discuss problems arising in our approach.Comment: 27 pages, LaTeX file. To be published in Phys. Rev.

    Impact of Hot Carrier Aging on Random Telegraph Noise and Within a Device Fluctuation

    Get PDF
    For nanometer MOSFETs, charging and discharging a single trap induces random telegraph noise (RTN). When there are more than a few traps, RTN signal becomes complex and appears as within a device fluctuation (WDF). RTN/WDF causes jitters in switch timing and is a major challenge to low power circuits. In addition to RTN/WDF, devices also age. The interaction between RTN/WDF and aging is of importance and not fully understood. Some researchers reported aging increasing RTN/WDF, while others showed RTN/WDF being hardly affected by aging. The objective of this work is to investigate the impact of hot carrier aging (HCA) on the RTN/WDF of nMOSFETs. For devices of average RTN/WDF, it is found that the effect of HCA is generally modest. For devices of abnormally high RTN/WDF, however, for the first time, we report HCA reducing RTN/WDF substantially (>50%). This reduction originates from either a change of current distribution or defect losses
    • 

    corecore