92 research outputs found
A high-pressure hydrogen time projection chamber for the MuCap experiment
The MuCap experiment at the Paul Scherrer Institute performed a
high-precision measurement of the rate of the basic electroweak process of
nuclear muon capture by the proton, . The
experimental approach was based on the use of a time projection chamber (TPC)
that operated in pure hydrogen gas at a pressure of 10 bar and functioned as an
active muon stopping target. The TPC detected the tracks of individual muon
arrivals in three dimensions, while the trajectories of outgoing decay (Michel)
electrons were measured by two surrounding wire chambers and a plastic
scintillation hodoscope. The muon and electron detectors together enabled a
precise measurement of the atom's lifetime, from which the nuclear muon
capture rate was deduced. The TPC was also used to monitor the purity of the
hydrogen gas by detecting the nuclear recoils that follow muon capture by
elemental impurities. This paper describes the TPC design and performance in
detail.Comment: 15 pages, 13 figures, to be submitted to Eur. Phys. J. A; clarified
section 3.1.2 and made minor stylistic corrections for Eur. Phys. J. A
requirement
A Precision Measurement of Nuclear Muon Capture on 3He
The muon capture rate in the reaction mu- 3He -> nu + 3H has been measured at
PSI using a modular high pressure ionization chamber. The rate corresponding to
statistical hyperfine population of the mu-3He atom is (1496.0 +- 4.0) s^-1.
This result confirms the PCAC prediction for the pseudoscalar form factors of
the 3He-3H system and the nucleon.Comment: 13 pages, 6 PostScript figure
Measurement of Muon Capture on the Proton to 1% Precision and Determination of the Pseudoscalar Coupling g_P
The MuCap experiment at the Paul Scherrer Institute has measured the rate L_S
of muon capture from the singlet state of the muonic hydrogen atom to a
precision of 1%. A muon beam was stopped in a time projection chamber filled
with 10-bar, ultra-pure hydrogen gas. Cylindrical wire chambers and a segmented
scintillator barrel detected electrons from muon decay. L_S is determined from
the difference between the mu- disappearance rate in hydrogen and the free muon
decay rate. The result is based on the analysis of 1.2 10^10 mu- decays, from
which we extract the capture rate L_S = (714.9 +- 5.4(stat) +- 5.1(syst)) s^-1
and derive the proton's pseudoscalar coupling g_P(q^2_0 = -0.88 m^2_mu) = 8.06
+- 0.55.Comment: Updated figure 1 and small changes in wording to match published
versio
The explanation of unexpected temperature dependence of the muon catalysis in solid deuterium
It is shown that due to the smallness of the inelastic cross-section of the
-atoms scattering in the crystal lattice at sufficiently low temperatures
the -mesomolecules formation from the upper state of the hyperfine
structure starts earlier than the mesoatoms thermolization. It
explains an approximate constancy of the -mesomolecule formation rate in
solid deuterium.Comment: 6 pages, 2 jpeg-figure
Measurement of the Rate of Muon Capture in Hydrogen Gas and Determination of the Proton's Pseudoscalar Coupling
The rate of nuclear muon capture by the proton has been measured using a new
experimental technique based on a time projection chamber operating in
ultra-clean, deuterium-depleted hydrogen gas at 1 MPa pressure. The capture
rate was obtained from the difference between the measured
disappearance rate in hydrogen and the world average for the decay
rate. The target's low gas density of 1% compared to liquid hydrogen is key to
avoiding uncertainties that arise from the formation of muonic molecules. The
capture rate from the hyperfine singlet ground state of the atom is
measured to be , from which the induced
pseudoscalar coupling of the nucleon, , is
extracted. This result is consistent with theoretical predictions for
that are based on the approximate chiral symmetry of QCD.Comment: submitted to Phys.Rev.Let
Study of aging properties of a wire chamber operating with high-pressure hydrogen
Abstract The project for a precision measurement of the mp-capture rate (mCAP experiment) is based on an application of a multi-wire proportional chamber (MWPC) operating in ultra-pure hydrogen at 10 bar pressure. A special test setup was constructed at PNPI to investigate the MWPC performance under the expected experimental conditions. The aging studies of the MWPCs were performed with intense irradiation from an a-source ð 241 AmÞ and a b-source ð 90 SrÞ: After 45 days of continuous irradiation by a-particles no changes in the currents, in the signal shapes, and in the counting rates were observed. It was demonstrated that the MWPCs can operate without degradation at least up to accumulated charges of 0:1 C=cm wire. These irradiation conditions are much more severe than in the real experiment. During the study of the MWPC we have observed an appearance of short duration signals with amplitudes an order of magnitude larger than those of normal signals from the a-particles. The number of such signals (''streamers'') strongly depend on HV. We shall continue these tests in the future with the goal of obtaining more detailed information about aging properties of MWPCs operating with high-pressure hydrogen.
Study of aging properties of a wire chamber operating with high-pressure hydrogen
The project for a precision measurement of the µp-capture rate (µCAP experiment) is based on an application of a multi-wire proportional chamber (MWPC) operating in ultra-pure hydrogen at 10 bar pressure. A special test setup was constructed at PNPI to investigate the MWPC performance under the expected experimental conditions. The aging studies of the MWPCs were performed with intense irradiation from an alpha-source (Am 241 ) and a beta-source (Sr 90 ). After 45 days of continuous irradiation by alpha-particles no changes in the currents, in the signal shapes, and in the counting rates were observed. It was demonstrated that the MWPCs can operate without degradation at least up to accumulated charges of 0.1 C/cm wire. These irradiation conditions are much more severe than in the real experiment. During the study of the MWPC we have observed an appearance of short duration signals with amplitudes an order of magnitude larger than those of normal signals from the alpha-particles. The number of such signals ("streamers") strongly depend on HV. We shall continue these tests in the future with the goal of obtaining more detailed information about aging properties of MWPCs operating with high-pressure hydrogen
Experimental warming differentially affects vegetative and reproductive phenology of tundra plants
Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra
Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes
Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance at colder sites. To test this hypothesis, we examined up to 20 years of phenology data for 47 tundra plant species at 18 high-latitude sites along a climatic gradient. Across all species, the timing of leaf emergence and flowering was more sensitive to a given increase in summer temperature at colder than warmer high-latitude locations. A similar pattern was seen over time for the flowering phenology of a widespread species, Cassiope tetragona. These are among the first results highlighting differential phenological responses of plants across a climatic gradient and suggest the possibility of convergence in flowering times and therefore an increase in gene flow across latitudes as the climate warms
- …