73 research outputs found

    Effects of heavy metal soil pollution and acid rain on growth and water use efficiency of a young model forest ecosystem

    Get PDF
    In a 4-year lysimeter experiment, we investigated the effects of topsoil heavy metal pollution (3,000mg kg−1 Zn, 640mg kg−1 Cu, 90mg kg−1 Pb and 10mg kg−1 Cd) and (synthetic) acid rain (pH3.5) on tree growth and water use efficiency of young forest ecosystems consisting of Norway spruce (Picea abies), willow (Salix viminalis), poplar (Populus tremula) and birch (Betula pendula) trees and a variety of understorey plants. The treatments were applied in a Latin square factorial design (contaminated vs uncontaminated topsoil, acidified rain vs ambient rain) to 16 open-top chambers, with 4 replicates each. Each open-top chamber contained two lysimeters, one with a calcareous, and the other with acidic subsoil. The four tree species responded quite differently to heavy metal pollution and type of subsoil. The fine root mass, which was only sampled at the end of the experiment in 2003, was significantly reduced by heavy metal pollution in P. abies, P. tremula and B. pendula, but not in S. viminalis. The metal treatment responses of above-ground biomass and leaf area varied between years. In 2002, the heavy metal treatment reduced above-ground biomass and leaf area in P. tremula, but not in the other species. In 2003, metals did not reduce above-ground growth in P. tremula, but did so in the other species. It appears that the responses in above-ground biomass and leaf area, which paralleled each other, were related to changes in the relative competitive strength of the various species in the two experimental years. S. viminalis gained relative to P. tremula in absence of metal stress, in particular on calcareous subsoil, while P. abies showed the largest increases in growth rates in all treatments. Above- and below-ground growth was strongly inhibited by acidic subsoil in S. viminalis and to a lesser degree also in P. abies. In P. abies, this subsoil effect was enhanced by metal stress. Acid rain was not found to have any substantial effect. Whole-system water use efficiency was reduced by metal stress and higher on calcareous than on acidic subsoi

    Root growth of different oak provenances in two soils under drought stress and air warming conditions

    Get PDF
    Background and aims: Oaks are considered to be drought- and thermo-tolerant tree species. Nevertheless, species and provenances may differ in their ecological requirements. We hypothesised that (i) provenances from xeric sites are better adapted to drought than those from more humid sites, (ii) oaks direct root growth towards resource-rich layers, and (iii) air-warming promotes root growth. Methods: To test different provenances of Quercus robur, Q. petraea and Q. pubescens, we conducted a model ecosystem experiment with young trees, grown on acidic and calcareous soil, subjected to drought, air warming, the combination of warming and drought, and a control. Results: The results were only in partial agreement with the first hypothesis. As expected the provenances originating from drier sites produced more biomass than those from more humid sites under drought conditions. Surprisingly, however, they reacted more sensitive to water limiting conditions, as they produced also substantially more biomass under well-watered conditions. The drought treatment reduced root mass substantially in the upper soil. In agreement with the second hypothesis this led to a shift in the centre of root mass to lower depth, where water was still more available than closer to the soil surface. In contrast to the third hypothesis, the air-warming treatment, which was very mild however compared to climate change scenarios, had no significant effects on root growth. Conclusions: Given that the provenances from drier sites showed more biomass loss at water limiting conditions than provenances from more humid sites, it remains questionable whether provenances from drier sites are better suited for a future climat

    Water regime of metal-contaminated soil under juvenile forest vegetation

    Get PDF
    In a three-year factorial lysimeter study in Open Top Chambers (OTCs), we investigated the effect of topsoil pollution by the heavy metals Zn, Cu, and Cd on the water regime of newly established forest ecosystems. Furthermore, we studied the influence of two types of uncontaminated subsoils (acidic vs. calcareous) and two types of irrigation water acidity (ambient rainfall chemistry vs. acidified chemistry) on the response of the vegetation. Each of the eight treatment combinations was replicated four times. The contamination (2700mgkg−1 Zn, 385mgkg−1 Cu and 10mg kg−1 Cd) was applied by mixing filter dust from a non-ferrous metal smelter into the upper 15cm of the soil profile, consisting of silty loam (pH6.5). The same vegetation was established in all 32 lysimeters. The model forest ecosystem consisted of seedlings of Norway spruce (Picea abies), willow (Salix viminalis), poplar (Populus tremula) and birch (Betula pendula) trees and a variety of herbaceous understorey plants. Systematic and significant effects showed up in the second and third growing season after canopies had closed. Evapotranspiration was reduced in metal contaminated treatments, independent of the subsoil type and acidity of the irrigation water. This effect corresponded to an even stronger reduction in root growth in the metal treatments. In the first two growing seasons, evapotranspiration was higher on the calcareous than on the acidic subsoil. In the third year the difference disappeared. Acidification of the irrigation water had no significant effect on water consumption, although a tendency to enhance evapotranspiration became increasingly manifest in the second and third year. Soil water potentials indicated that the increasing water consumption over the years was fed primarily by intensified extraction of water from the topsoil in the lysimeters with acidic subsoil, whereas also lower depths became strongly exploited in the lysimeters with calcareous subsoil. These patterns agreed well with the vertical profiles of fine root density related with the two types of subsoil. Leaf transpiration measurements and biomass samples showed that different plant species in part responded quite differently and occasionally even in opposite ways to the metal treatments and subsoil conditions. They suggest that the year-to-year changes in treatment effects on water consumption and extraction patterns were related to differences in growth dynamics, as well as to shifts in competitiveness of the various species. Results showed that the uncontaminated subsoil offered a possibility to compensate the reduction in root water extraction in the topsoil under drought, as well as metal stres

    Influence of Soil Type on the Effects of Elevated Atmospheric CO2 and N Deposition on the Water Balance and Growth of a Young Spruce and Beech Forest

    Get PDF
    Sixteen open-top chambers, each equipped with two non-weighablegravity-drained lysimeter compartments, were used to investigate the impacts of elevated atmospheric carbon dioxide (CO2) concentration and nitrogen (N) deposition on the water relations and growth of young model forest ecosystems on two different types of soils. The same vegetation of a mixed spruce and beech overstorey and various herbs in the understorey was planted in all treatments on both soils. The soils were repacked on top of a drainage layer. Four combinations of treatments were applied in four replicates each: ambient (370 cm3 m-3) CO2 + low (7 kg N ha-1 a-1) N deposition, ambient CO2 + high(70 kg N ha-1 a-1) N deposition, elevated (590 cm3 m-3) CO2 + low N deposition, and elevated CO2 + high N deposition. After canopy closure, treatment effects on evapotranspiration and growth during the third year of study were very different for the two soils.On the acidic sandy loam, elevated CO2 enhanced growth(leaf biomass +21%, roots +27%) at reduced evapotranspiration (-9%). High N deposition increased aboveground growth even more strongly (+50%), but also increased evapotranspiration (+16%). Together, elevated CO2 and high N had a more than additive fertilizer effect on growth, while their effects on evapotranspirationcompensated. On the calcareous loamy sand, elevated CO2not only tended to enhance growth (leaf biomass +17%, roots +20%), but also increased evapotranspiration (+5%).On this soil, aboveground growth was stimulated by N only incombination with elevated CO2, but less than on the acidic soil, while evapotranspiration (-6.5%) and root growth into the subsoil (-54%) were decreased by increased N deposition at both CO2 concentrations, in contrast to the N treatments on the acidic sandy loam. The influence of the soil on the observed ecosystem responses canbe interpreted in terms of the concept of optimal resource allocatio

    Effects of elevated CO2 on chloroplast pigments of spruce (Picea abies) and beech (Fagus sylvatica) in model ecosystems as modified by provenance, soil type, and nitrogen supply

    Get PDF
    Young beech (Fagus sylvatica L.) and spruce (Picea abies [L,] Karst.) trees, each from two different provenances, were grown in competition in model ecosystems in open-top chambers for four years. The treatments consisted of elevated concentrations of CO, (370 μL L-1 versus 590 μL L-1), increased wet deposition of nitrogen (7 versus 70 kg N ha-1 y-1) and two different forest soils (acidic versus calcareous). Chloroplast pigments in dark- and light-adapted leaf material sampled in the last year of the experiment were analysed. Differences in pigment composition between provenances were observed only in beech trees. Soil type significantly affected the pigment composition in both species. Trees grown under calcareous conditions had higher contents of chlorophylls, whereas acidic soil conditions caused significantly enhanced levels of ß-carotene and xanthophylls as well as increased values of the xanthophyll de-epoxidation status. For both tree species light-adapted samples had higher carotenoid concentrations and de-epoxidation state values than dark-adapted foliage, whereas neither C02 nor N-treatment affected these parameters. Elevated CO, application induced decreased concentrations of total chlorophyll contents in both species. Nitrogen deposition had no effects on pigment composition neither for spruce nor for beech trees. Interactions between CO, and nitrogen application were not observed for both tree species

    Impacts of Air Pollution and Climate Change on Forest Ecosystems — Emerging Research Needs

    Get PDF
    Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems “Forests under Anthropogenic Pressure Effects of Air Pollution, Climate Change and Urban Development”, September 1016, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3) is still the phytotoxic air pollutant of major interest. Challenging issues are how to make O3 standards or critical levels more biologically based and at the same time practical for wide use; quantification of plant detoxification processes in flux modeling; inclusion of multiple environmental stresses in critical load determinations; new concept development for nitrogen saturation; interactions between air pollution, climate, and forest pests; effects of forest fire on air quality; the capacity of forests to sequester carbon under changing climatic conditions and coexposure to elevated levels of air pollutants; enhanced linkage between molecular biology, biochemistry, physiology, and morphological traits

    Seasonal growth, δ13C in leaves and stem, and phloem structure of birch (Betula pendula) under low ozone concentrations

    Get PDF
    The growth of potted birch cuttings (one clone of Betula pendula) was studied under low O3 concentrations (0, 0.050, 0.075, 0.100 μl l-1) throughout an entire growing season. With increasing O3 dose, 20–50% of all leaves formed were prematurely shed, while 40–70% of the remaining foliage displayed advanced discoloration by the end of the season. Ozonation affected the S, P and N concentration of leaves and increased δ13C in leaves and stem, while the CO2 assimilation rate declined with increasing CO2 concentration in mesophyll intercellulars. While whole-plant production correlated negatively with the O3 dose, ozone increased the specific leaf weight (i.e. leaf weight/leaf area, SLW) but decreased the ratios of stem weight/stem length and root/shoot biomass. Neither the latter ratio nor SLW changed in experimentally defoliated control plants, whereas in ozonated plants starch accumulated along leaf veins and phloem tissue was deformed in the leaf petioles and the stem. Only in early summer was the relative growth rate higher in the ozonated than in the control plants. The ratio of whole-plant biomass production versus total foliage area formed was lowered under O3 stress. However, when relating biomass to the actual foliage area present due to leaf loss, this ratio did not differ between treatments. Similarly the ratio of actual foliage area versus basal stem area in cross-section did not differ. Overall, whole-plant production was strongly determined by O3-caused changes in crown structure and began to be limited at O3 doses (approximately 180 μl l-1 h) similar to those of rural sites in Central Europe

    Responses to Airborne Ozone and Soilborne Metal Pollution in Afforestation Plants with Different Life Forms

    No full text
    With the current increases in environmental stress, understanding species-specific responses to multiple stress agents is needed. This science is especially important for managing ecosystems that are already confronted with considerable pollution. In this study, responses to ozone (O3, ambient daily course values + 20 ppb) and mixed metal contamination in soils (MC, cadmium/copper/lead/zinc = 25/1100/2500/1600 mg kg−1), separately and in combination, were evaluated for three plant species (Picea abies, Acer pseudoplatanus, Tanacetum vulgare) with different life forms and ecological strategies. The two treatments elicited similar stress reactions, as shown by leaf functional traits, gas exchange, tannin, and nutrient markers, irrespective of the plant species and life form, whereas the reactions to the treatments differed in magnitude. Visible and microscopic injuries at the organ or cell level appeared along the penetration route of ozone and metal contamination. At the whole plant level, the MC treatment caused more severe injuries than the O3 treatment and few interactions were observed between the two stress factors. Picea trees, with a slow-return strategy, showed the highest stress tolerance in apparent relation to an enhancement of conservative traits and an exclusion of stress agents. The ruderal and more acquisitive Tanacetum forbs translocated large amounts of contaminants above ground, which may be of concern in a phytostabilisation context. The deciduous Acer trees—also with an acquisitive strategy—were most sensitive to both stress factors. Hence, species with slow-return strategies may be of particular interest for managing metal-polluted sites in the current context of multiple stressors and for safely confining soil contaminants below ground

    Metal Accumulation and Biomass Production in Young Afforestations Established on Soil Contaminated by Heavy Metals

    No full text
    The restoration of forest ecosystems on metal-contaminated sites can be achieved whilst produc-ing valuable plant biomass. Here, we investigated the metal accumulation and biomass production of young afforestations on contaminated plots by simulating brownfield site conditions. On 16 3-m2 plots, the 15 cm topsoil was experimentally contaminated with Zn/Cu/Pb/Cd = 2854/588/103/9.2 mg kg−1 using smelter filter dust, while 16 uncontaminated plots (Zn/Cu/Pb/Cd = 97/28/37/< 1) were used as controls. Both the calcareous (pH 7.4) and acidic (pH 4.2) subsoils remained uncontaminated. The afforestations consisted of groups of conifers, deciduous trees, and understorey plants. During the four years of cultivation, 2254/86/0.35/10 mg m−2 Zn/Cu/Pb/Cd were extracted from the contaminated soils and transferred to the aboveground parts of the plants (1279/72/0.06/5.5 mg m−2 in the controls). These extractions represented 3/2/3% of the soluble soil Zn/Cu/Cd fractions. The conifers showed 4–8 times lower root-to-shoot translocation of Cu and Zn than the deciduous trees. The contamination did not affect the biomass of the understorey plants and reduced that of the trees by 23% at most. Hence, we conclude that the afforestation of brown field sites with local tree species is an interesting option for their reclamation from an ecological as well as economic perspective.ISSN:2223-774

    Effects of elevated CO2 on chloroplast pigments of spruce (Picea abies) and beech (Fagus sylvatica) in model ecosystems as modified by provenance, soil type, and nitrogen supply

    Get PDF
    Young beech (Fagus sylvatica L.) and spruce (Picea abies [L,] Karst.) trees, each from two different provenances, were grown in competition in model ecosystems in open-top chambers for four years. The treatments consisted of elevated concentrations of CO, (370 μL L-1 versus 590 μL L-1), increased wet deposition of nitrogen (7 versus 70 kg N ha-1 y-1) and two different forest soils (acidic versus calcareous). Chloroplast pigments in dark- and light-adapted leaf material sampled in the last year of the experiment were analysed. Differences in pigment composition between provenances were observed only in beech trees. Soil type significantly affected the pigment composition in both species. Trees grown under calcareous conditions had higher contents of chlorophylls, whereas acidic soil conditions caused significantly enhanced levels of ß-carotene and xanthophylls as well as increased values of the xanthophyll de-epoxidation status. For both tree species light-adapted samples had higher carotenoid concentrations and de-epoxidation state values than dark-adapted foliage, whereas neither C02 nor N-treatment affected these parameters. Elevated CO, application induced decreased concentrations of total chlorophyll contents in both species. Nitrogen deposition had no effects on pigment composition neither for spruce nor for beech trees. Interactions between CO, and nitrogen application were not observed for both tree species
    corecore