39 research outputs found

    Quick Combinatorial Artificial Bee Colony -qCABC- Optimization Algorithm for TSP

    Get PDF
    Combinatorial Artificial Bee Colony Algorithm (CABC) is a new version of Artificial Bee Colony (ABC) to solve combinatorial type optimization problems and quick Artificial Bee Colony (qABC) algorithm is an improved version of ABC in which the onlooker bees behavior is modeled in more detailed way. Studies showed that qABC algorithm improves the convergence performance of standard ABC on numerical optimization. In this paper, to see the performance of this new modeling way of onlookers' behavior on combinatorial optimization, we apply the qABC idea to CABC and name this new algorithm as quick CABC (qCABC). qCABC is tested on Traveling Salesman Problem and simulation results show that qCABC algorithm improves the convergence and final performance of CABC

    A quick semantic artificial bee colony programming (qsABCP) for symbolic regression

    No full text
    Artificial bee colony programming (ABCP) is a novel evolutionary computation based automatic programming method, which uses the basic structure of artificial bee colony (ABC) algorithm. In this paper, some studies were conducted to improve the performance of ABCP and three new versions of ABCP are introduced. One of these improvements is related to the convergence performance of ABCP. In order to increase the local search ability and achieve higher quality solutions in early cycles, quick ABCP algorithm was developed. Experimental studies validate the enhancement of the convergence performance when the quick ABC approach is used in ABCP. The second improvement introduced in this paper is about providing high locality. Using semantic similarity based operators in the information sharing mechanism of ABCP, semantic ABCP was developed and experiment results show that semantic based information sharing improves solution quality. Finally, combining these two methods, quick semantic ABCP is introduced. Performance of these novel methods was compared with some well known automatic programming algorithms on literature test problems. Additionally, ABCP based methods were used to find approximations of the Colebrook equation for flow friction. Simulation results show that, the proposed methods can be used to solve symbolic regression problems effectively. (C) 2019 Elsevier Inc. All rights reserved
    corecore