133 research outputs found

    Microsatellite instability is highly prevalent in older patients with colorectal cancer

    Get PDF
    BackgroundClinical guidelines suggest screening of colorectal cancer (CRC) for microsatellite instability (MSI). However, microsatellite instability—high (MSI-H) CRC is not rare in older patients. This study aimed to investigate the prevalence of MSI-H CRC in an unselected population in an age-based manner.Material and methodsA retrospective analysis of data from patients undergoing radical surgery for CRC was performed. Only cases with results from MSI testing using immunochemistry (IHC) were analyzed. Age-based analyses were performed using two cut-off ages: 50 years. as stated in Amsterdam II guidelines, and 60 years. as outlined in the revised Bethesda criteria.ResultsThe study population included 343 (146 female and 197 male) patients with a median age of 70 years (range 21–90 years). The prevalence of MSI-H tumors in the entire cohort was 18.7%. The prevalence of MSI-H CRC was 22.5% in the group ≤50 years vs. 18.2% in the group >50 years using the age limit in the Amsterdam II guidelines. MSI-H CRC was present in 12.6% of the group aged ≤60 years compared to 20.6% in the control group >60 years.ConclusionMSI screening of CRC based on age alone is associated with negative selection of a relevant number of cases. MSI-H CRC is also common in elderly patients, who may be negatively selected secondary to an age-based screening algorithm. Following the results of this study, screening based on clinical criteria should be omitted in favor of systematic screening as is already internationally practiced

    Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes

    Get PDF
    Fibroblast activation protein (FAP), as described so far, is a type II cell surface serine protease expressed by fibroblastic cells in areas of active tissue remodelling such as tumour stroma or healing wounds. We investigated the expression of FAP by fibroblast-like synoviocytes (FLSs) and compared the synovial expression pattern in rheumatoid arthritis (RA) and osteoarthritis (OA) patients. Synovial tissue from diseased joints of 20 patients, 10 patients with refractory RA and 10 patients with end-stage OA, was collected during routine surgery. As a result, FLSs from intensively inflamed synovial tissues of refractory RA expressed FAP at high density. Moreover, FAP expression was co-localised with matrix metalloproteinases (MMP-1 and MMP-13) and CD44 splice variants v3 and v7/8 known to play a major role in the concert of extracellular matrix degradation. The pattern of signals appeared to constitute a characteristic feature of FLSs involved in rheumatoid arthritic joint-destructive processes. These FAP-expressing FLSs with a phenotype of smooth muscle actin-positive myofibroblasts were located in the lining layer of the synovium and differ distinctly from Thy-1-expressing and non-proliferating fibroblasts of the articular matrix. The intensity of FAP-specific staining in synovial tissue from patients with RA was found to be different when compared with end-stage OA. Because expression of FAP by RA FLSs has not been described before, the findings of this study highlight a novel element in cartilage and bone destruction of arthritic joints. Moreover, the specific expression pattern qualifies FAP as a therapeutic target for inhibiting the destructive potential of fibroblast-like synovial cells

    An extended association screen in multiple sclerosis using 202 microsatellite markers targeting apoptosis-related genes does not reveal new predisposing factors

    Get PDF
    Apoptosis, the programmed death of cells, plays a distinct role in the etiopathogenesis of Multiple sclerosis (MS), a common disease of the central nervous system with complex genetic background. Yet, it is not clear whether the impact of apoptosis is due to altered apoptotic behaviour caused by variations of apoptosis-related genes. Instead, apoptosis in MS may also represent a secondary response to cellular stress during acute inflammation in the central nervous system. Here, we screened 202 apoptosis-related genes for association by genotyping 202 microsatellite markers in initially 160 MS patients and 160 controls, both divided in 4 sets of pooled DNA samples, respectively. When applying Bonferroni correction, no significant differences in allele frequencies were detected between MS patients and controls. Nevertheless, we chose 7 markers for retyping in individual DNA samples, thereby eliminating 6 markers from the list of candidates. The remaining candidate, the ERBB3 gene microsatellite, was genotyped in additional 245 MS patients and controls. No association of the ERBB3 marker with the disease was detected in these additional cohorts. In consequence, we did not find further evidence for apoptosis-related genes as predisposition factors in MS

    Association study in the 5q31-32 linkage region for schizophrenia using pooled DNA genotyping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several linkage studies suggest that chromosome 5q31-32 might contain risk loci for schizophrenia (SZ). We wanted to identify susceptibility genes for schizophrenia within this region.</p> <p>Methods</p> <p>We saturated the interval between markers D5S666 and D5S436 with 90 polymorphic microsatellite markers and genotyped two sets of DNA pools consisting of 300 SZ patients of Bulgarian origin and their 600 parents. Positive associations were followed-up with SNP genotyping.</p> <p>Results</p> <p>Nominally significant evidence for association (p < 0.05) was found for seven markers (D5S0023i, IL9, RH60252, 5Q3133_33, D5S2017, D5S1481, D5S0711i) which were then individually genotyped in the trios. The predicted associations were confirmed for two of the markers: D5S2017, localised in the <it>SPRY4-FGF1 </it>locus (p = 0.004) and IL9, localized within the IL9 gene (p = 0.014). Fine mapping was performed using single nucleotide polymorphisms (SNPs) around D5S2017 and IL9. In each region four SNPs were chosen and individually genotyped in our full sample of 615 SZ trios. Two SNPs showed significant evidence for association: rs7715300 (p = 0.001) and rs6897690 (p = 0.032). Rs7715300 is localised between the <it>TGFBI </it>and <it>SMAD5 </it>genes and rs6897690 is within the <it>SPRY4 </it>gene.</p> <p>Conclusion</p> <p>Our screening of 5q31-32 implicates three potential candidate genes for SZ: <it>SMAD5</it>, <it>TGFBI </it>and <it>SPRY4</it>.</p

    Cardiovascular and metabolic determinants of quality of life in patients with cancer

    Get PDF
    AIMS: Maintaining quality of life (QoL) in patients with cancer has gathered significant interest, but little is known about its major determinants. We sought to identify determinants of QoL in patients undergoing cancer treatment as well as in treatment-naïve patients about to commence such therapy. METHODS AND RESULTS: QoL was assessed in 283 patients with cancer using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire Core 30 questionnaire. All patients underwent a battery of tests including physical examination, resting electrocardiogram, hand grip strength, and biochemistry assessment. Using multivariable logistic regression, we found that age [odds ratio (OR) 0.954, 95% confidence interval (CI) 0.916-0.994], resting heart rate (OR 1.036, 95% CI 1.004-1.068), hand grip strength (OR 0.932, 95% CI 0.878-0.990), and the presence of cachexia (OR 4.334, 95% CI 1.767-10.631) and dyspnoea (OR 3.725, 95% CI 1.540-9.010; all P < 0.05) remained independently predictive of reduced QoL. CONCLUSIONS: Therefore, it may be reasonable to address circumstances that are affecting muscle mass, body weight, and heart rate to maintaining QoL; however, prospective studies to test these endpoints are required

    Platinum-group elements, S, Se and Cu in highly depleted abyssal peridotites from the Mid-Atlantic Ocean Ridge (ODP Hole 1274A): Influence of hydrothermal and magmatic processes

    Get PDF
    Highly depleted harzburgites and dunites were recovered from ODP Hole 1274A, near the intersection between the Mid-Atlantic Ocean Ridge and the 15°20′N Fracture Zone. In addition to high degrees of partial melting, these peridotites underwent multiple episodes of melt-rock reaction and intense serpentinization and seawater alteration close to the seafloor. Low concentrations of Se, Cu and platinum-group elements (PGE) in harzburgites drilled at around 35-85 m below seafloor are consistent with the consumption of mantle sulfides after high degrees (>15-20 %) of partial melting and redistribution of chalcophile and siderophile elements into PGE-rich residual microphases. Higher concentrations of Cu, Se, Ru, Rh and Pd in harzburgites from the uppermost and lowest cores testify to late reaction with a sulfide melt. Dunites were formed by percolation of silica- and sulfur-undersaturated melts into low-Se harzburgites. Platinum-group and chalcophile elements were not mobilized during dunite formation and mostly preserve the signature of precursor harzburgites, except for higher Ru and lower Pt contents caused by precipitation and removal of platinum-group minerals. During serpentinization at low temperature (<250 °C) and reducing conditions, mantle sulfides experienced desulfurization to S-poor sulfides (mainly heazlewoodite) and awaruite. Contrary to Se and Cu, sulfur does not record the magmatic evolution of peridotites but was mostly added in hydrothermal sulfides and sulfate from seawater. Platinum-group elements were unaffected by post-magmatic low-temperature processes, except Pt and Pd that may have been slightly remobilized during oxidative seawater alteration

    Lunar samples record an impact 4.2 billion years ago that may have formed the Serenitatis Basin

    Get PDF
    Impact cratering on the Moon and the derived size-frequency distribution functions of lunar impact craters are used to determine the ages of unsampled planetary surfaces across the Solar System. Radiometric dating of lunar samples provides an absolute age baseline, however, crater-chronology functions for the Moon remain poorly constrained for ages beyond 3.9 billion years. Here we present U–Pb geochronology of phosphate minerals within shocked lunar norites of a boulder from the Apollo 17 Station 8. These minerals record an older impact event around 4.2 billion years ago, and a younger disturbance at around 0.5 billion years ago. Based on nanoscale observations using atom probe tomography, lunar cratering records, and impact simulations, we ascribe the older event to the formation of the large Serenitatis Basin and the younger possibly to that of the Dawes crater. This suggests the Serenitatis Basin formed unrelated to or in the early stages of a protracted Late Heavy Bombardment
    corecore