13,516 research outputs found

    The globular cluster system of NGC 1316 IV. Nature of the star cluster complex SH2

    Full text link
    The light of the merger remnant NGC 1316 is dominated by old and intermediate-age stars. The only sign of current star formation in this big galaxy is the HII region SH2, an isolated star cluster complex with a ring-like morphology and an estimated age of 0.1 Gyr at a galactocentric distance of about 35 kpc. A nearby intermediate-age globular cluster, surrounded by weak line emission and a few more young star clusters, is kinematically associated. The origin of this complex is enigmatic. The nebular emission lines permit a metallicity determination which can discriminate between a dwarf galaxy or other possible precursors. We used the Integrated Field Unit of the VIMOS instrument at the Very Large Telescope of the European Southern Observatory to study the morphology, kinematics, and metallicity employing line maps, velocity maps, and line diagnostics of a few characteristic spectra. The line ratios of different spectra vary, indicating highly structured HII regions, but define a locus of uniform metallicity. The strong-line diagnostic diagrams and empirical calibrations point to a nearly solar or even super-solar oxygen abundance. The velocity dispersion of the gas is highest in the region offset from the bright clusters. Star formation may be active on a low level. There is evidence for a large-scale disk-like structure in the region of SH2, which would make the similar radial velocity of the nearby globular cluster easier to understand. The high metallicity does not fit to a dwarf galaxy as progenitor. We favour the scenario of a free-floating gaseous complex having its origin in the merger 2 Gyr ago. Over a long period the densities increased secularly until finally the threshold for star formation was reached. SH2 illustrates how massive star clusters can form outside starbursts and without a considerable field population.Comment: 10 pages, 5 figures, accepted for Astronomy & Astrophysic

    Gravitational waveforms with controlled accuracy

    Get PDF
    A partially first-order form of the characteristic formulation is introduced to control the accuracy in the computation of gravitational waveforms produced by highly distorted single black hole spacetimes. Our approach is to reduce the system of equations to first-order differential form on the angular derivatives, while retaining the proven radial and time integration schemes of the standard characteristic formulation. This results in significantly improved accuracy over the standard mixed-order approach in the extremely nonlinear post-merger regime of binary black hole collisions.Comment: Revised version, published in Phys. Rev. D, RevTeX, 16 pages, 4 figure

    Bounds for the time to failure of hierarchical systems of fracture

    Full text link
    For years limited Monte Carlo simulations have led to the suspicion that the time to failure of hierarchically organized load-transfer models of fracture is non-zero for sets of infinite size. This fact could have a profound significance in engineering practice and also in geophysics. Here, we develop an exact algebraic iterative method to compute the successive time intervals for individual breaking in systems of height nn in terms of the information calculated in the previous height n1n-1. As a byproduct of this method, rigorous lower and higher bounds for the time to failure of very large systems are easily obtained. The asymptotic behavior of the resulting lower bound leads to the evidence that the above mentioned suspicion is actually true.Comment: Final version. To appear in Phys. Rev. E, Feb 199

    CCS and NH_3 Emission Associated with Low-Mass Young Stellar Objects

    Get PDF
    In this work we present a sensitive and systematic single-dish survey of CCS emission (complemented with ammonia observations) at 1 cm, toward a sample of low- and intermediate-mass young star-forming regions known to harbor water maser emission, made with NASA's 70 m antenna at Robledo de Chavela, Spain. Out of the 40 star-forming regions surveyed in the CCS (2_(1)-1_(0)) line, only six low-mass sources show CCS emission: one transitional object between the prestellar and protostellar Class 0 phase (GF9-2), three Class 0 protostars (L1448-IRS3, L1448C, and B1-IRS), a Class I source (L1251A), and a young T Tauri star (NGC 2071 North). Since CCS is considered an "early-time" (≲10^5 yr) molecule, we explain these results by either proposing a revision of the classification of the age of NGC 2071 North and L1251A, or suggesting the possibility that the particular physical conditions and processes of each source affect the destruction/production of the CCS. No statistically significant relationship was found between the presence of CCS and parameters of the molecular outflows and their driving sources. Nevertheless, we found a significant relationship between the detectability of CCS and the ammonia peak intensity (higher in regions with CCS), but not with its integrated intensity. This tendency may suggest that the narrower ammonia line widths in the less turbulent medium associated with younger cores may compensate for the differences in ammonia peak intensity, rendering differences in integrated intensity negligible. From the CCS detection rate we derive a lifetime of this molecule of ≃(0.7-3) × 10^4 yr in low-mass star-forming regions

    Scalar field induced oscillations of neutron stars and gravitational collapse

    Full text link
    We study the interaction of massless scalar fields with self-gravitating neutron stars by means of fully dynamic numerical simulations of the Einstein-Klein-Gordon perfect fluid system. Our investigation is restricted to spherical symmetry and the neutron stars are approximated by relativistic polytropes. Studying the nonlinear dynamics of isolated neutron stars is very effectively performed within the characteristic formulation of general relativity, in which the spacetime is foliated by a family of outgoing light cones. We are able to compactify the entire spacetime on a computational grid and simultaneously impose natural radiative boundary conditions and extract accurate radiative signals. We study the transfer of energy from the scalar field to the fluid star. We find, in particular, that depending on the compactness of the neutron star model, the scalar wave forces the neutron star either to oscillate in its radial modes of pulsation or to undergo gravitational collapse to a black hole on a dynamical timescale. The radiative signal, read off at future null infinity, shows quasi-normal oscillations before the setting of a late time power-law tail.Comment: 12 pages, 13 figures, submitted to Phys. Rev.

    Bose-Einstein condensates on tilted lattices: coherent, chaotic and subdiffusive dynamics

    Full text link
    The dynamics of a (quasi)one-dimensional interacting atomic Bose-Einstein condensate in a tilted optical lattice is studied in a discrete mean-field approximation, i.e., in terms of the discrete nonlinear Schr\"odinger equation. If the static field is varied the system shows a plethora of dynamical phenomena. In the strong field limit we demonstrate the existence of (almost) non-spreading states which remain localized on the lattice region populated initially and show coherent Bloch oscillations with fractional revivals in the momentum space (so called quantum carpets). With decreasing field, the dynamics becomes irregular, however, still confined in configuration space. For even weaker fields we find sub-diffusive dynamics with a wave-packet width spreading as t1/4t^{1/4}.Comment: 4 pages, 5 figure

    Probabilistic Approach to Time-Dependent Load-Transfer Models of Fracture

    Full text link
    A probabilistic method for solving time-dependent load-transfer models of fracture is developed. It is applicable to any rule of load redistribution, i.e, local, hierarchical, etc. In the new method, the fluctuations are generated during the breaking process (annealed randomness) while in the usual method, the random lifetimes are fixed at the beginning (quenched disorder). Both approaches are equivalent.Comment: 13 pages, 4 figures. To appear in Phys.Rev.

    Shell to shell energy transfer in MHD, Part II: Kinematic dynamo

    Full text link
    We study the transfer of energy between different scales for forced three-dimensional MHD turbulent flows in the kinematic dynamo regime. Two different forces are examined: a non-helical Taylor Green flow with magnetic Prandtl number P_M=0.4, and a helical ABC flow with P_M=1. This analysis allows us to examine which scales of the velocity flow are responsible for dynamo action, and identify which scales of the magnetic field receive energy directly from the velocity field and which scales receive magnetic energy through the cascade of the magnetic field from large to small scales. Our results show that the turbulent velocity fluctuations are responsible for the magnetic field amplification in the small scales (small scale dynamo) while the large scale field is amplified mostly due to the large scale flow. A direct cascade of the magnetic field energy from large to small scales is also present and is a complementary mechanism for the increase of the magnetic field in the small scales. Input of energy from the velocity field in the small magnetic scales dominates over the energy that is cascaded down from the large scales until the large-scale peak of the magnetic energy spectrum is reached. At even smaller scales, most of the magnetic energy input is from the cascading process.Comment: Submitted to PR

    Evolutionary advantages of adaptive rewarding

    Get PDF
    Our wellbeing depends as much on our personal success, as it does on the success of our society. The realization of this fact makes cooperation a very much needed trait. Experiments have shown that rewards can elevate our readiness to cooperate, but since giving a reward inevitably entails paying a cost for it, the emergence and stability of such behavior remain elusive. Here we show that allowing for the act of rewarding to self-organize in dependence on the success of cooperation creates several evolutionary advantages that instill new ways through which collaborative efforts are promoted. Ranging from indirect territorial battle to the spontaneous emergence and destruction of coexistence, phase diagrams and the underlying spatial patterns reveal fascinatingly reach social dynamics that explains why this costly behavior has evolved and persevered. Comparisons with adaptive punishment, however, uncover an Achilles heel of adaptive rewarding that is due to over-aggression, which in turn hinders optimal utilization of network reciprocity. This may explain why, despite of its success, rewarding is not as firmly weaved into our societal organization as punishment.Comment: 14 pages, 8 figures; accepted for publication in New Journal of Physic
    corecore