24 research outputs found

    Comparison of the dynamic responses of monopiles and gravity base foundations for offshore wind turbines in sand using centrifuge modelling

    No full text
    Monopiles and gravity base foundations (GBF) are two of the most commonly used foundations for offshore wind turbines. As resonance can cause damage and even failure of wind turbines, understanding the difference between the dynamic responses of monopiles and GBFs under free vibration is important. However there is little experimental data regarding their natural frequency, especially from model tests carried out at correct stress levels. This paper presents the results of novel monopile and GBF tests using a centrifuge to directly determine the natural frequency (fn) of the foundation-soil system. The natural frequencies of wind turbine monopiles and GBFs in centrifuge models were measured during harmonic loading using a piezo-actuator, with the results confirming that soil-structure interaction must be considered to obtain the system's natural frequency as this frequency reduces substantially from fixed-base values. These results will contribute in preventing resonance induced damage in wind-turbines

    Dynamic response of monopiles in sand using centrifuge modelling

    No full text
    Monopiles are one of the most commonly used offshore foundation for wind turbines. Their static capacity, p-y curve and cyclic loading behaviour have been studied using 1 g tests and centrifuge tests, but there is little experimental data regarding their natural frequency, especially using centrifuge testing. The design of offshore wind turbine foundations is largely governed by natural frequency as resonance due to cyclic loading can cause damage and even failure. Understanding the dynamic response of the monopile under free vibration is thus critical to design. This paper presents the results of novel monopile (large diameter) and single pile (small diameter) tests in a centrifuge to for the first time directly determine the natural frequency (fn) of the pile-soil system. An experimental methodology was used to define the natural frequency via measured acceleration and force time histories and their fast Fourier transforms (FFT) under a force applied at a controlled frequency. The effects of pile diameter, embedded length, free length of the tower and soil density on fn were investigated in the centrifuge tests. The same models used in the centrifuge test at 50 g were also tested at 1 g in order to assess the relevance of earlier 1 g investigations into system behaviour. The measured natural frequency of wind turbine monopiles in centrifuge models during harmonic loading from a piezo-actuator, confirmed that soil structure interaction at an appropriate stress level must be taken into account to obtain the correct natural frequency. The experimental data was compared to theoretical solutions, giving important insights into the behaviour of these systems
    corecore