32 research outputs found

    Treatment of chronic plantar fasciopathy with extracorporeal shock waves (review)

    Get PDF
    There is an increasing interest by doctors and patients in extracorporeal shock wave therapy (ESWT) for chronic plantar fasciopathy (PF), particularly in second generation radial extracorporeal shock wave therapy (RSWT). The present review aims at serving this interest by providing a comprehensive overview on physical and medical definitions of shock waves and a detailed assessment of the quality and significance of the randomized clinical trials published on ESWT and RSWT as it is used to treat chronic PF. Both ESWT and RSWT are safe, effective, and technically easy treatments for chronic PF. The main advantages of RSWT over ESWT are the lack of need for any anesthesia during the treatment and the demonstrated long-term treatment success (demonstrated at both 6 and 12 months after the first treatment using RSWT, compared to follow-up intervals of no more than 12 weeks after the first treatment using ESWT). In recent years, a greater understanding of the clinical outcomes in ESWT and RSWT for chronic PF has arisen in relationship not only in the design of studies, but also in procedure, energy level, and shock wave propagation. Either procedure should be considered for patients 18 years of age or older with chronic PF prior to surgical intervention

    Radial extracorporeal shock wave therapy is efficient and safe in the treatment of fracture nonunions of superficial bones: a retrospective case series

    Get PDF
    Background: A substantial body of evidence supports the use of focused extracorporeal shock wave therapy (fESWT) in the non-invasive treatment of fracture nonunions. On the other hand, virtually no studies exist on the use of radial extracorporeal shock wave therapy (rESWT) for this indication. Methods: We retrospectively analyzed 22 patients treated with rESWT for fracture nonunions of superficial bones that failed to heal despite initial surgical fixation in most cases. Radial extracorporeal shock wave therapy was applied without anesthesia in three rESWT sessions on average, with one rESWT session per week and 3000 radial extracorporeal shock waves at an energy flux density of 0.18 mJ/mm(2) per session. Treatment success was monitored with radiographs and clinical examinations. Results: Six months after rESWT radiographic union was confirmed in 16 out of 22 patients (73%), which is similar to the success rate achieved in comparable studies using fESWT. There were no side effects. The tibia was the most common treatment site (10/22) and 70% of tibia nonunions healed within 6 months after rESWT. Overall, successfully treated patients showed a mean time interval of 8.8 +/- 0.8 (mean +/- standard error of the mean) months between initial fracture and commencement of rESWT whereas in unsuccessfully treated patients the mean interval was 26.0 +/- 10.1 months (p < 0.05). In unsuccessful tibia cases, the mean interval was 43.3 +/- 13.9 months. Conclusions: Radial extracorporeal shock wave therapy appears to be an effective and safe alternative in the management of fracture nonunions of superficial bones if diagnosed early and no fESWT device is available. The promising preliminary results of the present case series should encourage the implementation of randomized controlled trials for the early use of rESWT in fracture nonunions

    Radial Shock Wave Devices Generate Cavitation

    Get PDF
    Background Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT) devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues. Methods and Findings We used laser fiber optic probe hydrophone (FOPH) measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast;Electro Medical Systems, Nyon, Switzerland;D-Actor 200;Storz Medical, Tagerwillen, Switzerland) and a vibrating massage device (Vibracare;G5/General Physiotherapy, Inc.,Earth City, MO, USA). To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans) worms. Results FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device. Conclusions The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices

    Exposure of zebra mussels to extracorporeal shock waves demonstrates formation of new mineralized tissue inside and outside the focus zone

    Get PDF
    The success rate of extracorporeal shock wave therapy (ESWT) for fracture nonunions in human medicine (i.e. radiographic union at 6 months after ESWT) is only approximately 75%. Detailed knowledge regarding the underlying mechanisms that induce biocalcification after ESWT is limited. We analyzed the biological response within mineralized tissue of a new invertebrate model organism, the zebra mussel Dreissena polymorpha, after exposure with extracorporeal shock waves (ESWs). Mussels were exposed to ESWs with positive energy density of 0.4 mJ/mm(2) (A) or were sham exposed (B). Detection of newly calcified tissue was performed by exposing the mussels to fluorescent markers. Two weeks later, the A-mussels showed a higher mean fluorescence signal intensity within the shell zone than the B-mussels (P<0.05). Acoustic measurements revealed that the increased mean fluorescence signal intensity within the shell of the A-mussels was independent of the size and position of the focal point of the ESWs. These data demonstrate that induction of bio-calcification after ESWT may not be restricted to the region of direct energy transfer of ESWs into calcified tissue. The results of the present study are of relevance for better understanding of the molecular and cellular mechanisms that induce formation of new mineralized tissue after ESWT

    A Novel Ecdysone Receptor Mediates Steroid-Regulated Developmental Events during the Mid-Third Instar of Drosophila

    Get PDF
    The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E—signaling through a nuclear receptor heterodimer consisting of EcR and USP—induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC) through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component

    Methodological Flaws in Meta-Analyses of Clinical Studies on the Management of Knee Osteoarthritis with Stem Cells: A Systematic Review

    Get PDF
    (1) Background: Conclusions of meta-analyses of clinical studies may substantially influence opinions of prospective patients and stakeholders in healthcare. Nineteen meta-analyses of clinical studies on the management of primary knee osteoarthritis (pkOA) with stem cells, published between January 2020 and July 2021, came to inconsistent conclusions regarding the efficacy of this treatment modality. It is possible that a separate meta-analysis based on an independent, systematic assessment of clinical studies on the management of pkOA with stem cells may reach a different conclusion. (2) Methods: PubMed, Web of Science, and the Cochrane Library were systematically searched for clinical studies and meta-analyses of clinical studies on the management of pkOA with stem cells. All clinical studies and meta-analyses identified were evaluated in detail, as were all sub-analyses included in the meta-analyses. (3) Results: The inconsistent conclusions regarding the efficacy of treating pkOA with stem cells in the 19 assessed meta-analyses were most probably based on substantial differences in literature search strategies among different authors, misconceptions about meta-analyses themselves, and misconceptions about the comparability of different types of stem cells with regard to their safety and regenerative potential. An independent, systematic review of the literature yielded a total of 183 studies, of which 33 were randomized clinical trials, including a total of 6860 patients with pkOA. However, it was not possible to perform a scientifically sound meta-analysis. (4) Conclusions: Clinicians should interpret the results of the 19 assessed meta-analyses of clinical studies on the management of pkOA with stem cells with caution and should be cautious of the conclusions drawn therein. Clinicians and researchers should strive to participate in FDA and/or EMA reviewed and approved clinical trials to provide clinically and statistically valid efficacy

    Effects of Extracorporeal Shock Wave Therapy on Fracture Nonunions

    No full text
    The purpose of this study was to examine the effect of focused extracorporeal shock wave therapy (ESWT) on the treatment of nonunions. As part of a prospective study, we included 143 patients (average age, 41.4 years) with a diagnosis of nonunion (mean, 14.1 months; range, 6-84 months). High-energy shock wave treatment was applied using electromagnetic shock wave generators. The shock waves were applied in 3-5 sessions of 2500 to 3000 impulses each given at 0.25-0.84 mJ/mm2, at intervals of 48-72 hours between sessions. A maximum of 3 cycles of treatment was given, at 3-month intervals. The patients were followed during a 12-month period until fracture healing or, in case of failure, until another therapy was adopted. Complete healing was observed in 80 of 143 cases (55.9%) at an average time of 7.6 months (range, 2-24 months). Partial healing occurred in 41 cases (28.7%) and no healing was observed in 22 cases (15.4%). Patients with trophic nonunions had a better success rate than patients with atrophic nonunions (P<.05). The results show ESWT is a safe and effective treatment for nonunions. ESWT is more effective for trophic nonunions than atrophic nonunions
    corecore