2,961 research outputs found

    Foundations in Curating: Designing a System for Cataloging, Preparing, and Accessing MacEwan’s Invertebrate Fossil Collection

    Get PDF
    MacEwan University hosts a large collections of hitherto un-curated Upper Ordovician to Upper Mississippian invertebrate fossils, donated to the University in perpetuity by a former faculty member, which are currently housed in temporary storage by the University's Earth Sciences division. While field notes and limited provenience data were included with the donation, no standardized system of documentation or permanent storage plan currently exists in the Earth Sciences division to facilitate management, protection, and further study of these fossil specimens. The primary goal of this research project is to create a curatorial system, including accession, locality, catalog, and preparation forms and protocols, a photographic record of specimens, and an alphanumeric catalog coding system unique to MacEwan University, and to apply this system to the invertebrate fossil collection so that it might serve as a prototype for future curatorial efforts. It is hoped that a detailed analysis of MacEwan University's first cataloged fossil collection, in conjunction with the development of a foundational methodology for curating specimens, will have potential applications for collections held by other divisions within the University, which will in turn make MacEwan's collections accessible and useful to students, faculty, members of other institutions, and the public. *Indicates faculty mentor

    Identification and characterization of insulin-like growth factor receptors on adult rat cardiac myocytes: linkage to inositol 1,4,5-trisphosphate formation.

    Get PDF
    Cultured cardiac myocytes from adult Sprague-Dawley rats express both insulin-like growth factor-I (IGF-I) receptors and insulin-like growth factor-II/mannose 6-phosphate (IGF-II/Man6P) receptors and respond to IGF-I with a dose-dependent accumulation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,4-bisphosphate [Ins(1,4)P2]. Specific binding of [125I]IGF-I to isolated membranes from cultured cardiac myocytes amounted to 1-1.2%. Binding of [125I]IGF-I was inhibited by unlabeled IGF-I at nanomolar concentrations and insulin at much higher concentrations. These data suggest that IGF-I binds to its own receptor on rat cardiac myocytes. Competitive binding studies using isolated membranes from cardiac myocytes and [125I]IGF-II showed 2-4% specific binding. Binding of [125I]IGF-II was inhibited by IGF-II and much less potently by IGF-I and insulin. Immunoglobulin G (IgG) 3637 (an IgG directed against the IGF-II/Man6P receptor) partially inhibited binding of [125I]IGF-II whereas nonimmune IgG did not. Affinity cross-linking studies with [125I]IGF-II and cardiac myocyte membranes and subsequent analysis of the ligand-receptor complex using SDS-PAGE and autoradiography showed a radiolabeled band of approximately 250 kilodalton (kDa). The formation of the [125I]IGF-II-receptor complex was inhibited by incubation with IGF-II and IgG 3637 but not by insulin or nonimmune IgG. Western blotting of protein extracts from cultured cardiac myocytes was performed using IgG 3637 and an immunoperoxidase technique for the visualization of the IGF-II/Man6P receptor protein. A specific band at 220 kDa under nonreducing conditions was detected on the blots, providing further evidence for the expression of the IGF-II/Man6P receptor by cardiac myocytes. The effect of IGFs on the accumulation of inositol phosphates was measured by HPLC analysis of perchloric acid extracts from myo-[3H]inositol-labeled cultured cardiac myocytes. IGF-I (50 ng/ml) stimulated the accumulation both of Ins(1,4,5)P3 and Ins(1,4)P2 after 30 sec by 43% and 63%. IGF-II (up to 500 ng/ml) had no significant effect on inositol phosphate accumulation under the same conditions. However, in the presence of millimolar concentrations of Man6P, IGF-II (500 ng/ml) also increased Ins(1,4,5)P3 accumulation by 59%. We conclude that cardiac myocytes from adult rats express IGF receptors and respond to IGFs with the accumulation of Ins(1,4,5)P3 and Ins(1,4)P2. This effect seems to be mediated by an IGF-I receptor-specific pathway

    Inducible arginase 1 deficiency in mice leads to hyperargininemia and altered amino acid metabolism

    Get PDF
    Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1), which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing "floxed" Arg1 mice with CreER(T2) mice. The resulting mice (Arg-Cre) die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency

    Co-detection of micro seismic activity as early warning of gravitational slope failure

    Full text link
    We developed a new strategy for Disaster Risk Reduction for gravitational slope failure: We propose a simple method for real-time early warning of gravity-driven failures that considers and exploits both the heterogeneity of natural media and characteristics of acoustic emissions attenuation. This method capitalizes on co-detection of elastic waves emanating from micro-cracks by a network of multiple and spatially distributed sensors. Event co-detection is considered as surrogate for large event size with more frequent co-detected events marking imminence of catastrophic failure. In this study we apply this method to a steep rock glacier / debris slope and demonstrate the potential of this simple strategy for real world cases, i.e. at slope scale. This low cost, robust and autonomous system provides a well adapted alternative/complementary solution for Early Warning Systems.Comment: 11 pages, 8 figure

    Protease gene families in Populus and Arabidopsis

    Get PDF
    BACKGROUND: Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution. RESULTS: We have performed a comparative analysis of protease genes in the two sequenced dicot genomes, Arabidopsis thaliana and Populus trichocarpa by using genes coding for proteases in the MEROPS database [1] for Arabidopsis to identify homologous sequences in Populus. A multigene-based phylogenetic analysis was performed. Most protease families were found to be larger in Populus than in Arabidopsis, reflecting recent genome duplication. Detailed studies on e.g. the DegP, Clp, FtsH, Lon, rhomboid and papain-Like protease families showed the pattern of gene family expansion and gene loss was complex. We finally show that different Populus tissues express unique suites of protease genes and that the mRNA levels of different classes of proteases change along a developmental gradient. CONCLUSION: Recent gene family expansion and contractions have made the Arabidopsis and Populus complements of proteases different and this, together with expression patterns, gives indications about the roles of the individual gene products or groups of proteases

    Infection after Acute Ischemic Stroke: Risk Factors, Biomarkers, and Outcome

    Get PDF
    Background. The activation of inflammatory cascades triggered by ischemic stroke may play a key role in the development of infections. Methods. Patients admitted with ischemic stroke within 24 hours were prospectively enrolled. Biomarkers of infection were measured on days 1, 3, and 5. The patients were continuously monitored for predefined infections. Results. Patients with infection were older (OR 1.06 per year, 95% CI 1.01–1.11) and had a higher National Institute of Health Stroke Scale Score (NIHSS, OR 1.21, 95% CI 1.10–1.34), localization in the insula, and higher stroke volumes on diffusion-weighted imaging. The maximum temperature on days 1 and 3, leukocytes, interleukin-6, lipopolysaccharide-binding protein on days 1, 3, and 5, C-reactive protein on days 3 and 5, and procalcitonin on day 5 were higher and HLA-DR-expression on monocytes on days 1, 3, and 5 lower in patients with infection. Age and NIHSS predicted the development of infections. Infection was an independent predictor of poor functional outcome. Conclusions. Severe stroke and increasing age were shown to be early predictors for infections after stroke

    Organization of personnel management in oil and gas corporation "Petrovietnam"

    Get PDF
    The petroleum industry is one of the most vital industries in the development strategy of Vietnam. Prevailing in this industry is Vietnam National Oil and Gas Group,“Petrovietnam”, operating under the directions of Ministry of Industry and Trade and controlling the oil and gas industry. A significant part in the steady growth path and the operational efficiency increment of the Group is contributed by the human resource policies. As oil prices were sharply declining, which began in 2014, a certain workforce reduction was planned by “Petrovietnam”, not only to deal with the situation but also to improve the quality of its workforce. Thus, managing human resources is one of the strategic tools of “Petrovietnam” corporate group

    Ventilation and transformation of Labrador Sea Water and its rapid export in the deep Labrador Current

    Get PDF
    A model of the subpolar North Atlantic Ocean is used to study different aspects of ventilation and water mass transformation during a year with moderate convection intensity in the Labrador Sea. The model realistically describes the salient features of the observed hydrographic structure and current system, including boundary currents and recirculations. Ventilation and transformation rates are defined and compared. The transformation rate of Labrador Sea Water (LSW), defined in analogy to several observational studies, is 6.3 Sv (Sv ≡ 106 m3 s−1) in the model. Using an idealized ventilation tracer, mimicking analyses based on chlorofluorocarbon inventories, an LSW ventilation rate of 10 Sv is found. Differences between both rates are particularly significant for those water masses that are partially transformed into denser water masses during winter. The main export route of the ventilated LSW is the deep Labrador Current (LC). Backward calculation of particle trajectories demonstrates that about one-half of the LSW leaving the Labrador Sea within the deep LC originates in the mixed layer during that same year. Near the offshore flank of the deep LC at about 55°W, the transformation of LSW begins in January and is at a maximum in February/March. While the export of transformed LSW out of the central Labrador Sea continues for several months, LSW generated near the boundary current is exported more rapidly, with maximum transport rates during March/April within the deep LC
    corecore