6,965 research outputs found
A Moving Bump in a Continuous Manifold: A Comprehensive Study of the Tracking Dynamics of Continuous Attractor Neural Networks
Understanding how the dynamics of a neural network is shaped by the network
structure, and consequently how the network structure facilitates the functions
implemented by the neural system, is at the core of using mathematical models
to elucidate brain functions. This study investigates the tracking dynamics of
continuous attractor neural networks (CANNs). Due to the translational
invariance of neuronal recurrent interactions, CANNs can hold a continuous
family of stationary states. They form a continuous manifold in which the
neural system is neutrally stable. We systematically explore how this property
facilitates the tracking performance of a CANN, which is believed to have clear
correspondence with brain functions. By using the wave functions of the quantum
harmonic oscillator as the basis, we demonstrate how the dynamics of a CANN is
decomposed into different motion modes, corresponding to distortions in the
amplitude, position, width or skewness of the network state. We then develop a
perturbative approach that utilizes the dominating movement of the network's
stationary states in the state space. This method allows us to approximate the
network dynamics up to an arbitrary accuracy depending on the order of
perturbation used. We quantify the distortions of a Gaussian bump during
tracking, and study their effects on the tracking performance. Results are
obtained on the maximum speed for a moving stimulus to be trackable and the
reaction time for the network to catch up with an abrupt change in the
stimulus.Comment: 43 pages, 10 figure
Properties of Ridges in Elastic Membranes
When a thin elastic sheet is confined to a region much smaller than its size
the morphology of the resulting crumpled membrane is a network of straight
ridges or folds that meet at sharp vertices. A virial theorem predicts the
ratio of the total bending and stretching energies of a ridge. Small strains
and curvatures persist far away from the ridge. We discuss several kinds of
perturbations that distinguish a ridge in a crumpled sheet from an isolated
ridge studied earlier (A. E. Lobkovsky, Phys. Rev. E. 53 3750 (1996)). Linear
response as well as buckling properties are investigated. We find that quite
generally, the energy of a ridge can change by no more than a finite fraction
before it buckles.Comment: 13 pages, RevTeX, acknowledgement adde
Beam Orientation Optimization for Intensity Modulated Radiation Therapy using Adaptive l1 Minimization
Beam orientation optimization (BOO) is a key component in the process of IMRT
treatment planning. It determines to what degree one can achieve a good
treatment plan quality in the subsequent plan optimization process. In this
paper, we have developed a BOO algorithm via adaptive l_1 minimization.
Specifically, we introduce a sparsity energy function term into our model which
contains weighting factors for each beam angle adaptively adjusted during the
optimization process. Such an energy term favors small number of beam angles.
By optimizing a total energy function containing a dosimetric term and the
sparsity term, we are able to identify the unimportant beam angles and
gradually remove them without largely sacrificing the dosimetric objective. In
one typical prostate case, the convergence property of our algorithm, as well
as the how the beam angles are selected during the optimization process, is
demonstrated. Fluence map optimization (FMO) is then performed based on the
optimized beam angles. The resulted plan quality is presented and found to be
better than that obtained from unoptimized (equiangular) beam orientations. We
have further systematically validated our algorithm in the contexts of 5-9
coplanar beams for 5 prostate cases and 1 head and neck case. For each case,
the final FMO objective function value is used to compare the optimized beam
orientations and the equiangular ones. It is found that, our BOO algorithm can
lead to beam configurations which attain lower FMO objective function values
than corresponding equiangular cases, indicating the effectiveness of our BOO
algorithm.Comment: 19 pages, 2 tables, and 5 figure
Geometrical dependence of low frequency noise in superconducting flux qubits
A general method for directly measuring the low-frequency flux noise (below
10 Hz) in compound Josephson junction superconducting flux qubits has been used
to study a series of 85 devices of varying design. The variation in flux noise
across sets of qubits with identical designs was observed to be small. However,
the levels of flux noise systematically varied between qubit designs with
strong dependence upon qubit wiring length and wiring width. Furthermore,
qubits fabricated above a superconducting ground plane yielded lower noise than
qubits without such a layer. These results support the hypothesis that
localized magnetic impurities in the vicinity of the qubit wiring are a key
source of low frequency flux noise in superconducting devices.Comment: 5 pages, 5 figure
Coupling biochemistry and mechanics in cell adhesion: a model for inhomogeneous stress fiber contraction
Biochemistry and mechanics are closely coupled in cell adhesion. At sites of
cell-matrix adhesion, mechanical force triggers signaling through the
Rho-pathway, which leads to structural reinforcement and increased
contractility in the actin cytoskeleton. The resulting force acts back to the
sites of adhesion, resulting in a positive feedback loop for mature adhesion.
Here we model this biochemical-mechanical feedback loop for the special case
when the actin cytoskeleton is organized in stress fibers, which are
contractile bundles of actin filaments. Activation of myosin II molecular
motors through the Rho-pathway is described by a system of reaction-diffusion
equations, which are coupled into a viscoelastic model for a contractile actin
bundle. We find strong spatial gradients in the activation of contractility and
in the corresponding deformation pattern of the stress fiber, in good agreement
with experimental findings.Comment: Revtex, 35 pages, 13 Postscript figures included, in press with New
Journal of Physics, Special Issue on The Physics of the Cytoskeleto
Hydrodynamic coupling and rotational mobilities near planar elastic membranes
We study theoretically and numerically the coupling and rotational
hydrodynamic interactions between spherical particles near a planar elastic
membrane that exhibits resistance towards shear and bending. Using a
combination of the multipole expansion and Faxen's theorems, we express the
frequency-dependent hydrodynamic mobility functions as a power series of the
ratio of the particle radius to the distance from the membrane for the self
mobilities, and as a power series of the ratio of the radius to the
interparticle distance for the pair mobilities. In the quasi-steady limit of
zero frequency, we find that the shear- and bending-related contributions to
the particle mobilities may have additive or suppressive effects depending on
the membrane properties in addition to the geometric configuration of the
interacting particles relative to the confining membrane. To elucidate the
effect and role of the change of sign observed in the particle self and pair
mobilities, we consider an example involving a torque-free doublet of
counterrotating particles near an elastic membrane. We find that the induced
rotation rate of the doublet around its center of mass may differ in magnitude
and direction depending on the membrane shear and bending properties. Near a
membrane of only energetic resistance toward shear deformation, such as that of
a certain type of elastic capsules, the doublet undergoes rotation of the same
sense as observed near a no-slip wall. Near a membrane of only energetic
resistance toward bending, such as that of a fluid vesicle, we find a reversed
sense of rotation. Our analytical predictions are supplemented and compared
with fully resolved boundary integral simulations where a very good agreement
is obtained over the whole range of applied frequencies.Comment: 14 pages, 7 figures. Revised manuscript resubmitted to J. Chem. Phy
Multivisceral intestinal transplantation: Surgical pathology
We report the diagnostic surgical pathology of two children who underwent multivisceral abdominal transplantation and survived for 1 month and 6 months. There is little relevant literature, and diagnostic criteria for the various clinical possibilities are not established; this is made more complicated by the simultaneous occurrence of more than one process. We based our interpretations on conventional histology, augmented with immunohistology, including HLA staining that distinguished graft from host cells in situ. In some instances functional analysis of T cells propagated from the same biopsies was available and was used to corroborate morphological interpretations. A wide spectrum of changes was encountered. Graft-versus-host disease, a prime concern before surgery, was not seen. Rejection was severe in 1 patient, not present in the other, and both had evidence of lymphoproliferative disease, which was related to Epstein-Barr virus. Bacterial translocation through the gut wall was also a feature in both children. This paper documents and illustrates the various diagnostic possibilities.. © 1989 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted
Analytical study of the plasmonic modes of metal nanoparticle circular array
We analyze the plasmonic modes of a metal nanoparticle circular array. Closed
form solutions to the eigenmode problem are given. For each polarization, the
plasmonic mode with the highest quality is found to be an antiphase mode. We
found that the significant suppression in radiative loss can be understood as
the cancellation of the dipolar radiation term in the radiative linewidth. The
remaining finite radiative linewidth decreases exponentially as the number of
particle increases.Comment: 18 pages, 6 figure
- …