7 research outputs found

    Possible Factors Promoting Car Evacuation in the 2011 Tohoku Tsunami Revealed by Analysing a Large-Scale Questionnaire Survey in Kesennuma City

    No full text
    Excessive car evacuation can cause severe traffic jams that can lead to large numbers of casualties during tsunami disasters. Investigating the possible factors that lead to unnecessary car evacuation can ensure smoother tsunami evacuations and mitigate casualty damages in future tsunami events. In this study, we quantitatively investigated the possible factors that promote car evacuation, including both necessary and unnecessary usages, by statistically analysing a large amount of data on actual tsunami evacuation behaviours surveyed in Kesennuma, where devastating damage occurred during the 2011 Tohoku Tsunami. A straightforward statistical analysis revealed a high percentage of car evacuations (approx. 50%); however, this fraction includes a high number of unnecessary usage events that were distinguished based on mode choice reasons. In addition, a binary logistic regression was conducted to quantitatively evaluate the effects of several factors and to identify the dominant factor that affected evacuation mode choice. The regression results suggested that the evacuation distance was the dominant factor for choosing car evacuation relative to other factors, such as age and sex. The cross-validation test of the regression model demonstrated that the considered factors were useful for decision making and the prediction of evacuation mode choice in the target area

    Improvement of tsunami countermeasures based on lessons from the 2011 great east Japan earthquake and tsunami: situation after five years

    No full text
    The 2011 Great East Japan Tsunami exposed many hidden weaknesses in Japan’s tsunami countermeasures. Since then, many improvements have been made in both structural measures (numerical simulations, coastal defense structures, building damage assessment and control forests) and nonstructural measures (warning/observation and evacuation). This review summarizes the lessons and improvements in the five-year time period after the 2011 event. After five years, most of the lessons from the 2011 tsunami have been applied, including more realistic tsunami simulations using very fine grids, methods to strengthen coastal defense structures, building evacuations and coastal forests, improved warning content and key points to improve evacuation measures. Nevertheless, large future challenges remain, such as an advanced simulation technique and system for real-time hazard and risk prediction, implementation of coastal defense structures/multilayer countermeasures and encouraging evacuation. In addition, among papers presented at the coastal engineering conference in Japan, the proportion of tsunami-related research in Japan increased from 15% to 35% because of the 2011 tsunami, and approximately 65–70% of tsunami-related studies involve numerical simulation, coastal structures and building damage. These results show the impact of the 2011 tsunami on coastal engineering related to academic institutions and consulting industries in Japan as well as the interest in each tsunami countermeasure.Hydraulic Structures and Flood Ris

    Improvement of tsunami countermeasures based on lessons from the 2011 great east Japan earthquake and tsunami: situation after five years

    No full text
    The 2011 Great East Japan Tsunami exposed many hidden weaknesses in Japan’s tsunami countermeasures. Since then, many improvements have been made in both structural measures (numerical simulations, coastal defense structures, building damage assessment and control forests) and nonstructural measures (warning/observation and evacuation). This review summarizes the lessons and improvements in the five-year time period after the 2011 event. After five years, most of the lessons from the 2011 tsunami have been applied, including more realistic tsunami simulations using very fine grids, methods to strengthen coastal defense structures, building evacuations and coastal forests, improved warning content and key points to improve evacuation measures. Nevertheless, large future challenges remain, such as an advanced simulation technique and system for real-time hazard and risk prediction, implementation of coastal defense structures/multilayer countermeasures and encouraging evacuation. In addition, among papers presented at the coastal engineering conference in Japan, the proportion of tsunami-related research in Japan increased from 15% to 35% because of the 2011 tsunami, and approximately 65–70% of tsunami-related studies involve numerical simulation, coastal structures and building damage. These results show the impact of the 2011 tsunami on coastal engineering related to academic institutions and consulting industries in Japan as well as the interest in each tsunami countermeasure.Hydraulic Structures and Flood Ris
    corecore