757 research outputs found
Information Filtering on Coupled Social Networks
In this paper, based on the coupled social networks (CSN), we propose a
hybrid algorithm to nonlinearly integrate both social and behavior information
of online users. Filtering algorithm based on the coupled social networks,
which considers the effects of both social influence and personalized
preference. Experimental results on two real datasets, \emph{Epinions} and
\emph{Friendfeed}, show that hybrid pattern can not only provide more accurate
recommendations, but also can enlarge the recommendation coverage while
adopting global metric. Further empirical analyses demonstrate that the mutual
reinforcement and rich-club phenomenon can also be found in coupled social
networks where the identical individuals occupy the core position of the online
system. This work may shed some light on the in-depth understanding structure
and function of coupled social networks
Terrace-like structure in the above-threshold ionization spectrum of an atom in an IR+XUV two-color laser field
Based on the frequency-domain theory, we investigate the above-threshold
ionization (ATI) process of an atom in a two-color laser field with infrared
(IR) and extreme ultraviolet (XUV) frequencies, where the photon energy of the
XUV laser is close to or larger than the atomic ionization threshold. By using
the channel analysis, we find that the two laser fields play different roles in
an ionization process, where the XUV laser determines the ionization
probability by the photon number that the atom absorbs from it, while the IR
laser accelerates the ionized electron and hence widens the electron kinetic
energy spectrum. As a result, the ATI spectrum presents a terrace-like
structure. By using the saddle-point approximation, we obtain a classical
formula which can predict the cutoff of each plateau in the terrace-like ATI
spectrum. Furthermore, we find that the difference of the heights between two
neighboring plateaus in the terrace-like structure of the ATI spectrum
increases as the frequency of the XUV laser increases
Multipartite entanglement purification with quantum nondemolition detectors
We present a scheme for multipartite entanglement purification of quantum
systems in a Greenberger-Horne-Zeilinger state with quantum nondemolition
detectors (QNDs). This scheme does not require the controlled-not gates which
cannot be implemented perfectly with linear optical elements at present, but
QNDs based on cross-Kerr nonlinearities. It works with two steps, i.e., the
bit-flipping error correction and the phase-flipping error correction. These
two steps can be iterated perfectly with parity checks and simple single-photon
measurements. This scheme does not require the parties to possess sophisticated
single photon detectors. These features maybe make this scheme more efficient
and feasible than others in practical applications.Comment: 8 pages, 5 figure
An Intelligent Weighing System based on Editable Formula and Alterable Resolution
This paper is to design an intelligent weighing system to solve the problems in enterprises, such as incompatibility with hardware and software environment in different enterprise scenarios, the fixed interface layout and the dilemma that a single-way computational formulas can not fit the workflow of complementation of weighing system flexibly . A self-defining formula method is proposed to meet different demands from variable enterprises, which is solved by infix expression algorithm. The interface layout is screen self-adaptation by using an alterable resolution algorithm. The result of the experimental study reveals that the intelligent weighing system is more flexible in self-adaptation of environment than the traditional weighing system
BPhyOG: An interactive server for genome-wide inference of bacterial phylogenies based on overlapping genes
<p>Abstract</p> <p>Background</p> <p>Overlapping genes (OGs) in bacterial genomes are pairs of adjacent genes of which the coding sequences overlap partly or entirely. With the rapid accumulation of sequence data, many OGs in bacterial genomes have now been identified. Indeed, these might prove a consistent feature across all microbial genomes. Our previous work suggests that OGs can be considered as robust markers at the whole genome level for the construction of phylogenies. An online, interactive web server for inferring phylogenies is needed for biologists to analyze phylogenetic relationships among a set of bacterial genomes of interest.</p> <p>Description</p> <p>BPhyOG is an online interactive server for reconstructing the phylogenies of completely sequenced bacterial genomes on the basis of their shared overlapping genes. It provides two tree-reconstruction methods: Neighbor Joining (NJ) and Unweighted Pair-Group Method using Arithmetic averages (UPGMA). Users can apply the desired method to generate phylogenetic trees, which are based on an evolutionary distance matrix for the selected genomes. The distance between two genomes is defined by the normalized number of their shared OG pairs. BPhyOG also allows users to browse the OGs that were used to infer the phylogenetic relationships. It provides detailed annotation for each OG pair and the features of the component genes through hyperlinks. Users can also retrieve each of the homologous OG pairs that have been determined among 177 genomes. It is a useful tool for analyzing the tree of life and overlapping genes from a genomic standpoint.</p> <p>Conclusion</p> <p>BPhyOG is a useful interactive web server for genome-wide inference of any potential evolutionary relationship among the genomes selected by users. It currently includes 177 completely sequenced bacterial genomes containing 79,855 OG pairs, the annotation and homologous OG pairs of which are integrated comprehensively. The reliability of phylogenies complemented by annotations make BPhyOG a powerful web server for genomic and genetic studies. It is freely available at <url>http://cmb.bnu.edu.cn/BPhyOG</url>.</p
- …