802 research outputs found

    Electronic properties of Mn-Phthalocyanine - C60_{60} bulk heterojunctions: combining photoemission and electron energy-loss spectroscopy

    Full text link
    The electronic properties of co-evaporated mixtures (blends) of manganese phthalocyanine and the fullerene C60_{60} (MnPc:C60_{60}) have been studied as a function of the concentration of the two constituents using two supplementary electron spectroscopic methods, photoemission spectroscopy (PES) as well as electron energy-loss spectroscopy (EELS) in transmission. Our PES measurements provide a detailed picture of the electronic structure measured with different excitation energies as well as different mixing ratios between MnPc and C60_{60}. Besides a relative energy shift, the occupied electronic states of the two materials remain essentially unchanged. The observed energy level alignment is different compared to that of the related CuPc:C60_{60} bulk heterojunction. Moreover, the results from our EELS investigations show that despite of the rather small interface interaction the MnPc related electronic excitation spectrum changes significantly by admixing C60_{60} to MnPc thin films

    10152 Abstracts Collection -- Relationships, Objects, Roles, and Queries in Modern Languages

    Get PDF
    From 11/04/10 to 16/04/10, the Dagstuhl Seminar 10152 ``Relationships, Objects, Roles, and Queries in Modern Programming Languages\u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Pseudomonas aeruginosa and Staphylococcus aureus virulence factors as biomarkers of infection

    Get PDF
    The gold standard for the diagnosis of bacterial infections in clinical samples is based on culture tests that are time-consuming and labor-intense. For these reasons, an extraordinary effort has been made to identify biomarkers as the tools for sensitive, rapid and accurate identification of pathogenic microorganisms. Moreover, biomarkers have been tested to distinguish colonization from infection, monitor disease progression, determine the clinical status of patients or predict clinical outcomes. This mini-review describes Pseudomonas aeruginosa and Staphylococcus aureus biomarkers, which contribute to pathogenesis and have been used in culture-independent bacterial identification directly from patient samples

    Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator

    Get PDF
    In vitro compartmentalization of biochemical reaction networks is a crucial step towards engineering artificial cell-scale devices and systems. At this scale the dynamics of molecular systems becomes stochastic, which introduces several engineering challenges and opportunities. Here we study a programmable transcriptional oscillator system that is compartmentalized into microemulsion droplets with volumes between 33 fl and 16 pl. Simultaneous measurement of large populations of droplets reveals major variations in the amplitude, frequency and damping of the oscillations. Variability increases for smaller droplets and depends on the operating point of the oscillator. Rather than reflecting the stochastic kinetics of the chemical reaction network itself, the variability can be attributed to the statistical variation of reactant concentrations created during their partitioning into droplets. We anticipate that robustness to partitioning variability will be a critical challenge for engineering cell-scale systems, and that highly parallel time-series acquisition from microemulsion droplets will become a key tool for characterization of stochastic circuit function.1172sciescopu

    Enterococcus faecium:from microbiological insights to practical recommendations for infection control and diagnostics

    Get PDF
    Early in its evolution, Enterococcus faecium acquired traits that allowed it to become a successful nosocomial pathogen. E. faecium inherent tenacity to build resistance to antibiotics and environmental stressors that allows the species to thrive in hospital environments. The continual wide use of antibiotics in medicine has been an important driver in the evolution of E. faecium becoming a highly proficient hospital pathogen.For successful prevention and reduction of nosocomial infections with vancomycin resistant E. faecium (VREfm), it is essential to focus on reducing VREfm carriage and spread. The aim of this review is to incorporate microbiological insights of E. faecium into practical infection control recommendations, to reduce the spread of hospital-acquired VREfm (carriage and infections). The spread of VREfm can be controlled by intensified cleaning procedures, antibiotic stewardship, rapid screening of VREfm carriage focused on high-risk populations, and identification of transmission routes through accurate detection and typing methods in outbreak situations. Further, for successful management of E. faecium, continual innovation in the fields of diagnostics, treatment, and eradication is necessary

    Diagnostic Evasion of Highly-Resistant Microorganisms:A Critical Factor in Nosocomial Outbreaks

    Get PDF
    Highly resistant microorganisms (HRMOs) may evade screening strategies used in routine diagnostics. Bacteria that have evolved to evade diagnostic tests may have a selective advantage in the nosocomial environment. Evasion of resistance detection can result from the following mechanisms: low-level expression of resistance genes not resulting in detectable resistance, slow growing variants, mimicry of wild-type-resistance, and resistance mechanisms that are only detected if induced by antibiotic pressure. We reviewed reports on hospital outbreaks in the Netherlands over the past 5 years. Remarkably, many outbreaks including major nation-wide outbreaks were caused by microorganisms able to evade resistance detection by diagnostic screening tests. We describe various examples of diagnostic evasion by several HRMOs and discuss this in a broad and international perspective. The epidemiology of hospital-associated bacteria may strongly be affected by diagnostic screening strategies. This may result in an increasing reservoir of resistance genes in hospital populations that is unnoticed. The resistance elements may horizontally transfer to hosts with systems for high-level expression, resulting in a clinically significant resistance problem. We advise to communicate the identification of HRMOs that evade diagnostics within national and regional networks. Such signaling networks may prevent inter-hospital outbreaks, and allow collaborative development of adapted diagnostic tests
    corecore