583 research outputs found

    Field Emission for resonance sensing in MEMS/NEMS

    Get PDF
    In the past decades, there is a considerable interest in the sensor community to move from micron to nano-devices, typically scaling of resonators such as cantilever beams

    High-sensitivity field emission magnetometers and other applications of field emission technologies.

    Get PDF
    The feasibility and development of a field emission based anisotropic vector magnetometer is presented. Within this scope current magnetic sensing technology is investigated and compared. The advantages of, and need for, a field emission based magnetic sensor are then discussed. Background theory, simulation, fabrication, testing, and future developments of field emission magnetometers are presented. The possible applications of field emission to other technologies are also investigated. The magnetic sensing device presented uses a sharp field emitting tip with a radius of the order of 100nm which is fabricated using standard silicon processing techniques on highly n-doped silicon. Under a vacuum level of 10"6 mBar and at room temperature, a potential applied to a surrounding gate electrode extracts from this tip a beam of electrons which is incident upon two separate anode electrodes. In the absence of an external magnetic field the electron current incident on each of these two electrodes is equal, while in the presence of a magnetic field the Lorenz force skews the beam towards one of the electrodes, resulting in a differential current which is proportional to the magnetic field

    Plasma planarization for sensor applications

    Full text link

    Efficacy of pimobendan in the prevention of congestive heart failure or sudden death in doberman pinschers with preclinical dilated cardiomyopathy (the PROTECT study)

    Get PDF
    <p>Background: The benefit of pimobendan in delaying the progression of preclinical dilated cardiomyopathy (DCM) in Dobermans is not reported.</p> <p>Hypothesis: That chronic oral administration of pimobendan to Dobermans with preclinical DCM will delay the onset of CHF or sudden death and improve survival.</p> <p>Animals: Seventy-six client-owned Dobermans recruited at 10 centers in the UK and North America.</p> <p>Methods: The trial was a randomized, blinded, placebo-controlled, parallel group multicenter study. Dogs were allocated in a 1:1 ratio to receive pimobendan (Vetmedin capsules) or visually identical placebo.</p> <p>The composite primary endpoint was prospectively defined as either onset of CHF or sudden death. Time to death from all causes was a secondary endpoint.</p> <p>Results: The proportion of dogs reaching the primary endpoint was not significantly different between groups (P = .1). The median time to the primary endpoint (onset of CHF or sudden death) was significantly longer in the pimobendan (718 days, IQR 441–1152 days) versus the placebo group (441 days, IQR 151–641 days) (log-rank P = 0.0088). The median survival time was significantly longer in the pimobendan (623 days, IQR 491–1531 days) versus the placebo group (466 days, IQR 236–710 days) (log-rank P = .034).</p> <p>Conclusion and Clinical Importance: The administration of pimobendan to Dobermans with preclinical DCM prolongs the time to the onset of clinical signs and extends survival. Treatment of dogs in the preclinical phase of this common cardiovascular disorder with pimobendan can lead to improved outcome.</p&gt

    Tumor-specific mutations in low-frequency genes affect their functional properties

    Get PDF
    Causal genetic changes in oligodendrogliomas (OD) with 1p/19q co-deletion include mutations in IDH1, IDH2, CIC, FUBP1, TERT promoter and NOTCH1. However, it is generally assumed that more somatic mutations are required for tumorigenesis. This study aimed to establish whether genes mutated at low frequency can be involved in OD initiation and/or progression. We performed whole-genome sequencing on three anaplastic ODs with 1p/19q co-deletion. To estimate mutation frequency, we performed targeted resequencing on an additional 39 ODs. Whole-genome sequencing identified a total of 55 coding mutations (range 8–32 mutations per tumor), including known abnormalities in IDH1, IDH2, CIC and FUBP1. We also identified mutations in genes, most of which were previously not implicated in ODs. Targeted resequencing on 39 additional ODs confirmed that these genes are mutated at low frequency. Most of the mutations identified were predicted to have a deleterious functional effect. Functional analysis on a subset of these genes (e.g. NTN4 and MAGEH1) showed that the mutation affects the subcellular localization of the protein (n = 2/12). In addition, HOG cells stably expressing mutant GDI1 or XPO7 showed altered cell proliferation compared to those expressing wildtype constructs. Similarly, HOG cells expressing mutant SASH3 or GDI1 showed altered migration. The significantly higher rate of predicted deleterious mutations, the changes in subcellular localization and the effects on proliferation and/or migration indicate that many of these genes functionally may contribute to gliomagenesis and/or progression. These low-frequency genes and their affected pathways may provide new treatment targets for this tumor type

    Gene expression profiles of gliomas in formalin-fixed paraffin-embedded material

    Get PDF
    Background: We have recently demonstrated that expression profiling is a more accurate and objective method to classify gliomas than histology. Similar to most expression profiling studies, our experiments were performed using fresh frozen (FF) glioma samples whereas most archival samples are fixed in formalin and embedded in paraffin (FFPE). Identification of the same, expression-based intrinsic subtypes in FFPE-stored samples would enable validation of the prognostic value of these subtypes on these archival samples. In this study, we have therefore determined whether the intrinsic subtypes identified using FF material can be reproduced in FFPE-stored samples.Methods: We have performed expression profiling on 55 paired FF-FFPE glioma samples using HU133 plus 2.0 arrays (FF) and Exon 1.0 ST arrays (FFPE). The median time in paraffin of the FFPE samples was 14.1 years (range 6.6-26.4 years). Results: In general, the correlation between FF and FFPE expression in a single sample was poor. We then selected the most variable probe sets per gene (n17 583), and of these, the 5000 most variable probe sets on FFPE expre

    Isotype-specific activation of cystic fibrosis transmembrane conductance regulator-chloride channels by cGMP-dependent protein kinase II

    Get PDF
    Type II cGMP-dependent protein kinase (cGKII) isolated from pig intestinal brush borders and type I alpha cGK (cGKI) purified from bovine lung were compared for their ability to activate the cystic fibrosis transmembrane conductance regulator (CFTR)-Cl- channel in excised, inside-out membrane patches from NIH-3T3 fibroblasts and from a rat intestinal cell line (IEC-CF7) stably expressing recombinant CFTR. In both cell models, in the presence of cGMP and ATP, cGKII was found to mimic the effect of the catalytic subunit of cAMP-dependent protein kinase (cAK) on opening CFTR-Cl-channels, albeit with different kinetics (2-3-min lag time, reduced rate of activation). By contrast, cGKI or a monomeric cGKI catalytic fragment was incapable of opening CFTR-Cl- channels and also failed to potentiate cGKII activation of the channels. The cAK activation but not the cGKII activation was blocked by a cAK inhibitor peptide. The slow activation by cGKII could not be ascribed to counteracting protein phosphatases, since neither calyculin A, a potent inhibitor of phosphatase 1 and 2A, nor ATP gamma S (adenosine 5'-O-(thiotriphosphate)), producing stable thiophosphorylation, was able to enhance the activation kinetics. Channels preactivated by cGKII closed instantaneously upon removal of ATP and kinase but reopened in the presence of ATP alone. Paradoxically, immunoprecipitated CFTR or CF-2, a cloned R domain fragment of CFTR (amino acids 645-835) could be phosphorylated to a similar extent with only minor kinetic differences by both isotypes of cGK. Phosphopeptide maps of CF-2 and CFTR, however, revealed very subtle differences in site-specificity between the cGK isoforms. These results indicate that cGKII, in contrast to cGKI alpha, is a potential activator of chloride transport in CFTR-expressing cell types
    corecore