79 research outputs found

    Proof-checking Euclid

    Get PDF
    We used computer proof-checking methods to verify the correctness of our proofs of the propositions in Euclid Book I. We used axioms as close as possible to those of Euclid, in a language closely related to that used in Tarski's formal geometry. We used proofs as close as possible to those given by Euclid, but filling Euclid's gaps and correcting errors. Euclid Book I has 48 propositions, we proved 235 theorems. The extras were partly "Book Zero", preliminaries of a very fundamental nature, partly propositions that Euclid omitted but were used implicitly, partly advanced theorems that we found necessary to fill Euclid's gaps, and partly just variants of Euclid's propositions. We wrote these proofs in a simple fragment of first-order logic corresponding to Euclid's logic, debugged them using a custom software tool, and then checked them in the well-known and trusted proof checkers HOL Light and Coq.Comment: 53 page

    A Synthesis of the Procedural and Declarative Styles of Interactive Theorem Proving

    Get PDF
    We propose a synthesis of the two proof styles of interactive theorem proving: the procedural style (where proofs are scripts of commands, like in Coq) and the declarative style (where proofs are texts in a controlled natural language, like in Isabelle/Isar). Our approach combines the advantages of the declarative style - the possibility to write formal proofs like normal mathematical text - and the procedural style - strong automation and help with shaping the proofs, including determining the statements of intermediate steps. Our approach is new, and differs significantly from the ways in which the procedural and declarative proof styles have been combined before in the Isabelle, Ssreflect and Matita systems. Our approach is generic and can be implemented on top of any procedural interactive theorem prover, regardless of its architecture and logical foundations. To show the viability of our proposed approach, we fully implemented it as a proof interface called miz3, on top of the HOL Light interactive theorem prover. The declarative language that this interface uses is a slight variant of the language of the Mizar system, and can be used for any interactive theorem prover regardless of its logical foundations. The miz3 interface allows easy access to the full set of tactics and formal libraries of HOL Light, and as such has "industrial strength". Our approach gives a way to automatically convert any procedural proof to a declarative counterpart, where the converted proof is similar in size to the original. As all declarative systems have essentially the same proof language, this gives a straightforward way to port proofs between interactive theorem provers

    A Constructive Algebraic Hierarchy in Coq

    Get PDF
    AbstractWe describe a framework of algebraic structures in the proof assistant Coq. We have developed this framework as part of the FTA project in Nijmegen, in which a constructive proof of the fundamental theorem of algebra has been formalized in Coq.The algebraic hierarchy that is described here is both abstract and structured. Structures like groups and rings are part of it in an abstract way, defining e.g. a ring as a tuple consisting of a group, a binary operation and a constant that together satisfy the properties of a ring. In this way, a ring automatically inherits the group properties of the additive subgroup. The algebraic hierarchy is formalized in Coq by applying a combination of labelled record types and coercions. In the labelled record types of Coq, one can use dependent types: the type of one label may depend on another label. This allows us to give a type to a dependent-typed tuple like 〈A, f, a〉, where A is a set,f an operation on A and a an element of A. Coercions are functions that are used implicitly (they are inferred by the type checker) and allow, for example, to use the structure A:= 〈A, f, a〉 as a synonym for the carrier set A, as is often done in mathematical practice. Apart from the inheritance and reuse of properties, the algebraic hierarchy has proven very useful for reusing notations

    Towards an Intelligent Tutor for Mathematical Proofs

    Get PDF
    Computer-supported learning is an increasingly important form of study since it allows for independent learning and individualized instruction. In this paper, we discuss a novel approach to developing an intelligent tutoring system for teaching textbook-style mathematical proofs. We characterize the particularities of the domain and discuss common ITS design models. Our approach is motivated by phenomena found in a corpus of tutorial dialogs that were collected in a Wizard-of-Oz experiment. We show how an intelligent tutor for textbook-style mathematical proofs can be built on top of an adapted assertion-level proof assistant by reusing representations and proof search strategies originally developed for automated and interactive theorem proving. The resulting prototype was successfully evaluated on a corpus of tutorial dialogs and yields good results.Comment: In Proceedings THedu'11, arXiv:1202.453

    Mizar's Soft Type System

    No full text
    Item does not contain fulltex
    • …
    corecore