116 research outputs found

    Empirical Examination of Passing Lane Operational Benefits on Rural Two-Lane Highways

    Get PDF
    This paper presents an empirical investigation into the operational benefits of passing lanes on rural two-lane highways. Two study sites in the state of Montana were used in this investigation. Performance was examined at a single location upstream and multiple locations downstream of the passing lane at each study site. Using percent followers as a performance measure, operational benefits right after the passing lane ranged between 33% and 42% at one study site and 12% to 19% at the other study site under prevalent traffic levels. Study results also suggest that operational benefits persist for a remarkable distance beyond the end of the passing lane

    Investigation of Performance and Lane Utilization within a Passing Lane on a Two Lane Rural Highway

    Get PDF
    Abstract: An investigation into platooning and passing maneuvers within a passing lane section on a rural two-lane, two-way highway was considered in this study. The study site was located on US Highway 287 between the town of Townsend and the City of Helena in the state of Montana. Traffic volumes at study site, while considered relatively low, were typical on two-lane highways in many rural states. Per-lane analysis of performance measures and lane utilization (volume split) were used to indirectly examine passing maneuvers and lane changing at successive locations within the passing lane section. For the case study site, it was evident that traffic performance became relatively stable beyond half a mile into the passing lane for the traffic volumes investigated. Therefore, results strongly suggested that most passing maneuvers already took place before the 0.5-mile station and that the actual passing lane length was well beyond the optimal length required for breaking up platoons and improving performance

    Soil microbial communities and elk foraging intensity: implications for soil biogeochemical cycling in the sagebrush steppe

    Full text link
    Foraging intensity of large herbivores may exert an indirect top‐down ecological force on soil microbial communities via changes in plant litter inputs. We investigated the responses of the soil microbial community to elk (Cervus elaphus) winter range occupancy across a long‐term foraging exclusion experiment in the sagebrush steppe of the North American Rocky Mountains, combining phylogenetic analysis of fungi and bacteria with shotgun metagenomics and extracellular enzyme assays. Winter foraging intensity was associated with reduced bacterial richness and increasingly distinct bacterial communities. Although fungal communities did not respond linearly to foraging intensity, a greater ÎČ‐diversity response to winter foraging exclusion was observed. Furthermore, winter foraging exclusion increased soil cellulolytic and hemicellulolytic enzyme potential and higher foraging intensity reduced chitinolytic gene abundance. Thus, future changes in winter range occupancy may shape biogeochemical processes via shifts in microbial communities and subsequent changes to their physiological capacities to cycle soil C and N.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/136043/1/ele12722_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/136043/2/ele12722.pd

    Environment–host–microbial interactions shape the Sarraceniapurpurea microbiome at the continental scale

    Get PDF
    The importance of climate, habitat structure, and higher trophic levels on microbial diversity is only beginning to be understood. Here, we examined the influence of climate variables, plant morphology, and the abundance of aquatic invertebrates on the microbial biodiversity of the northern pitcher plant Sarracenia purpurea. The plant\u27s cup‐shaped leaves fill with rainwater and support a miniature, yet full‐fledged, ecosystem with a diverse microbiome that decomposes captured prey and a small network of shredding and filter‐feeding aquatic invertebrates that feed on microbes. We characterized pitcher microbiomes of 108 plants sampled at 36 sites from Florida to Quebec. Structural equation models revealed that annual precipitation and temperature, plant size, and midge abundance had direct effects on microbiome taxonomic and phylogenetic diversity. Climate variables also exerted indirect effects through plant size and midge abundance. Further, spatial structure and climate influenced taxonomic composition, but not phylogenetic composition. Our results suggest that direct effects of midge abundance and climate and indirect effects of climate through its effect on plant‐associated factors lead to greater richness of microbial phylotypes in warmer, wetter sites

    Exploring Microbiome Functional Dynamics through Space and Time with Trait-Based Theory

    Get PDF
    Microbiomes play essential roles in the health and function of animal and plant hosts and drive nutrient cycling across ecosystems. Integrating novel trait-based approaches with ecological theory can facilitate the prediction of microbial functional traits important for ecosystem functioning and health. In particular, the yield-acquisition-stress (Y-A-S) framework considers dominant microbial life history strategies across gradients of resource availability and stress. However, microbiomes are dynamic, and spatial and temporal shifts in taxonomic and trait composition can affect ecosystem functions. We posit that extending the Y-A-S framework to microbiomes during succession and across biogeographic gradients can lead to generalizable rules for how microbiomes and their functions respond to resources and stress across space, time, and diverse ecosystems. We demonstrate the potential of this framework by applying it to the microbiomes hosted by the carnivorous pitcher plant Sarracenia purpurea, which have clear successional trajectories and are distributed across a broad climatic gradient

    Micro-RNAs Are Related to Epicardial Adipose Tissue in Participants With Atrial Fibrillation: Data From the MiRhythm Study

    Get PDF
    Introduction: Epicardial adipose tissue (EAT) has been linked to incidence and recurrence of atrial fibrillation (AF), but the underlying mechanisms that mediate this association remain unclear. Circulating microRNAs (miRNAs) contribute to the regulation of gene expression in cardiovascular diseases, including AF. Thus, we sought to test the hypothesis that circulating miRNAs relate to burden of EAT. Methods: We examined the plasma miRNA profiles of 91 participants from the miRhythm study, an ongoing study examining associations between miRNA and AF. We quantified plasma expression of 86 unique miRNAs commonly expressed in cardiomyocytes using quantitative reverse transcriptase polymerase chain reaction (qPCR). From computed tomography, we used validated methods to quantify the EAT area surrounding the left atrium (LA) and indexed it to body surface area (BSA) to calculate indexed LA EAT (iLAEAT). Participants were divided into tertiles of iLAEAT to identify associations with unique miRNAs. We performed logistic regression analyses adjusting for factors associated with AF to examine relations between iLAEAT and miRNA. We performed further bioinformatics analysis of miRNA predicted target genes to identify potential molecular pathways are regulated by the miRNAs. Results: The mean age of the participants was 59 +/- 9, 35% were women, and 97% were Caucasian. Participants in the highest tertile of iLAEAT were more likely to have hypertension, heart failure, and thick posterior walls. In regression analyses, we found that miRNAs 155-5p (p \u3c 0.001) and 302a-3p (p \u3c 0.001) were significantly associated with iLAEAT in patients with AF. The predicted targets of the miRNAs identified were implicated in the regulation of cardiac hypertrophy, adipogenesis, interleukin-8 (IL-8), and nerve growth factor (NGF) signaling. Conclusion: miRNA as well as EAT have previously been linked to AF. Our finding that iLAEAT and miRNAs 155-5p and 302a-3p are associated suggest a possible direct link to between these entities in the development and maintenance of AF. Further research is needed to study causal relationships between these biomarkers

    Successful renal re-transplantation in the presence of pre-existing anti-DQ5 antibodies when there was zero mismatch at class I human leukocyte antigen A, B, & C: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Hyperacute rejection may be prevented by avoiding the transplantation of kidneys into patients with pre-existing anti-donor Class I human leukocyte antigen antibodies. However, the role of anti-donor-Class II-human leukocyte antigen-DQ antibodies is not established. The question is ever more relevant as more sensitive cross-matching techniques detect many additional antibodies during the final crossmatch. We now report successful renal transplantation of a patient who had pre-existing antibodies against his donor's human leukocyte antigen-DQ5.</p> <p>Case presentation</p> <p>Our patient, a Caucasian man, was 34 years of age when he received his first deceased donor renal transplant. After 8 years, his first transplant failed from chronic allograft dysfunction and an earlier bout of Banff 1A cellular rejection. The second deceased donor kidney transplant was initially allocated to the patient due to a 0 out of 6 mismatch. The B cell crossmatch was mildly positive, while the T Cell crossmatch was negative. Subsequent assays showed that the patient had preformed antibodies for human leukocyte antigen DQ5 against his second donor. Despite having preformed antibodies against the donor, the patient continues to have excellent allograft function two years after his second renal transplant.</p> <p>Conclusion</p> <p>The presence of pre-existing antibodies against human leukocyte antigen DQ5 does not preclude transplantation. The relevance of having other antibodies against class II human leukocyte antigens prior to transplantation remains to be studied.</p

    Circulating extracellular RNAs, myocardial remodeling, and heart failure in patients with acute coronary syndrome

    Get PDF
    Background: Given high on-treatment mortality in heart failure (HF), identifying molecular pathways that underlie adverse cardiac remodeling may offer novel biomarkers and therapeutic avenues. Circulating extracellular RNAs (ex-RNAs) regulate important biological processes and are emerging as biomarkers of disease, but less is known about their role in the acute setting, particularly in the setting of HF. Methods: We examined the ex-RNA profiles of 296 acute coronary syndrome (ACS) survivors enrolled in the Transitions, Risks, and Actions in Coronary Events Center for Outcomes Research and Education Cohort. We measured 374 ex-RNAs selected a priori, based on previous findings from a large population study. We employed a two-step, mechanism-driven approach to identify ex-RNAs associated with echocardiographic phenotypes (left ventricular [LV] ejection fraction, LV mass, LV end-diastolic volume, left atrial [LA] dimension, and LA volume index) then tested relations of these ex-RNAs with prevalent HF (N=31, 10.5%). We performed further bioinformatics analysis of microRNA (miRNAs) predicted targets\u27 genes ontology categories and molecular pathways. Results: We identified 44 ex-RNAs associated with at least one echocardiographic phenotype associated with HF. Of these 44 exRNAs, miR-29-3p, miR-584-5p, and miR-1247-5p were also associated with prevalent HF. The three microRNAs were implicated in the regulation p53 and transforming growth factor-beta signaling pathways and predicted to be involved in cardiac fibrosis and cell death; miRNA predicted targets were enriched in gene ontology categories including several involving the extracellular matrix and cellular differentiation. Conclusions: Among ACS survivors, we observed that miR-29-3p, miR-584-5p, and miR-1247-5p were associated with both echocardiographic markers of cardiac remodeling and prevalent HF. Relevance for Patients: miR-29c-3p, miR-584-5p, and miR-1247-5p were associated with echocardiographic phenotypes and prevalent HF and are potential biomarkers for adverse cardiac remodeling in HF

    Intersecting D3-branes and Holography

    Full text link
    We study a defect conformal field theory describing D3-branes intersecting over two space-time dimensions. This theory admits an exact Lagrangian description which includes both two- and four-dimensional degrees of freedom, has (4,4) supersymmetry and is invariant under global conformal transformations. Both two- and four-dimensional contributions to the action are conveniently obtained in a two-dimensional (2,2) superspace. In a suitable limit, the theory has a dual description in terms of a probe D3-brane wrapping an AdS_3 x S^1 slice of AdS_5 x S^5. We consider the AdS/CFT dictionary for this set-up. In particular we find classical probe fluctuations corresponding to the holomorphic curve wy=c\alpha^{\prime}. These fluctuations are dual to defect fields containing massless two-dimensional scalars which parameterize the classical Higgs branch, but do not correspond to states in the Hilbert space of the CFT. We also identify probe fluctuations which are dual to BPS superconformal primary operators and to their descendants. A non-renormalization theorem is conjectured for the correlators of these operators, and verified to order g^2.Comment: 46 pages, 5 figures, Latex, minor corrections to section 4.2, version published in Phys. Rev.
    • 

    corecore