655 research outputs found
Knot concordance and homology cobordism
We consider the question: "If the zero-framed surgeries on two oriented knots
in the 3-sphere are integral homology cobordant, preserving the homology class
of the positive meridians, are the knots themselves concordant?" We show that
this question has a negative answer in the smooth category, even for
topologically slice knots. To show this we first prove that the zero-framed
surgery on K is Z-homology cobordant to the zero-framed surgery on many of its
winding number one satellites P(K). Then we prove that in many cases the tau
and s-invariants of K and P(K) differ. Consequently neither tau nor s is an
invariant of the smooth homology cobordism class of the zero-framed surgery. We
also show, that a natural rational version of this question has a negative
answer in both the topological and smooth categories, by proving similar
results for K and its (p,1)-cables.Comment: 15 pages, 8 figure
MDCC: Multi-Data Center Consistency
Replicating data across multiple data centers not only allows moving the data
closer to the user and, thus, reduces latency for applications, but also
increases the availability in the event of a data center failure. Therefore, it
is not surprising that companies like Google, Yahoo, and Netflix already
replicate user data across geographically different regions.
However, replication across data centers is expensive. Inter-data center
network delays are in the hundreds of milliseconds and vary significantly.
Synchronous wide-area replication is therefore considered to be unfeasible with
strong consistency and current solutions either settle for asynchronous
replication which implies the risk of losing data in the event of failures,
restrict consistency to small partitions, or give up consistency entirely. With
MDCC (Multi-Data Center Consistency), we describe the first optimistic commit
protocol, that does not require a master or partitioning, and is strongly
consistent at a cost similar to eventually consistent protocols. MDCC can
commit transactions in a single round-trip across data centers in the normal
operational case. We further propose a new programming model which empowers the
application developer to handle longer and unpredictable latencies caused by
inter-data center communication. Our evaluation using the TPC-W benchmark with
MDCC deployed across 5 geographically diverse data centers shows that MDCC is
able to achieve throughput and latency similar to eventually consistent quorum
protocols and that MDCC is able to sustain a data center outage without a
significant impact on response times while guaranteeing strong consistency
MLI: An API for Distributed Machine Learning
MLI is an Application Programming Interface designed to address the
challenges of building Machine Learn- ing algorithms in a distributed setting
based on data-centric computing. Its primary goal is to simplify the
development of high-performance, scalable, distributed algorithms. Our initial
results show that, relative to existing systems, this interface can be used to
build distributed implementations of a wide variety of common Machine Learning
algorithms with minimal complexity and highly competitive performance and
scalability
Global water cycle
The primary objective is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates changes on both global and regional scales. The following subject areas are covered: (1) water vapor variability; (2) multi-phase water analysis; (3) diabatic heating; (4) MSU (Microwave Sounding Unit) temperature analysis; (5) Optimal precipitation and streamflow analysis; (6) CCM (Community Climate Model) hydrological cycle; (7) CCM1 climate sensitivity to lower boundary forcing; and (8) mesoscale modeling of atmosphere/surface interaction
- …