1,883 research outputs found

    Spin-1/2 geometric phase driven by decohering quantum fields

    Full text link
    We calculate the geometric phase of a spin-1/2 system driven by a one and two mode quantum field subject to decoherence. Using the quantum jump approach, we show that the corrections to the phase in the no-jump trajectory are different when considering an adiabatic and non-adiabatic evolution. We discuss the implications of our results from both the fundamental as well as quantum computational perspective.Comment: 4 page

    Direct measurement of finite-time disentanglement induced by a reservoir

    Full text link
    We propose a method for directly probing the dynamics of disentanglement of an initial two-qubit entangled state, under the action of a reservoir. We show that it is possible to detect disentanglement, for experimentally realizable examples of decaying systems, through the measurement of a single observable, which is invariant throughout the decay. The systems under consideration may lead to either finite-time or asymptotic disentanglement. A general prescription for measuring this observable, which yields an operational meaning to entanglement measures, is proposed, and exemplified for cavity quantum electrodynamics and trapped ions.Comment: 4 pages, 2 figure

    Ion backflow studies with a triple-GEM stack with increasing hole pitch

    Full text link
    Gas Electron Multipliers have undergone a very consistent development since their invention in 1997. Their production procedures have been tuned in such a way that nowadays it is possible to produce foils with areas of the order of the square meter that can operate at a reasonable gain, uniform over large areas and with a good stability in what concerns electrical discharges. For the third run of LHC, they will be included in the CMS and ALICE experiments after significant upgrades of the detectors, confirming that these structures are suitable for very large experiments. In the special case of Time Projection Chambers, the ion backflow and the energy resolution are sensitive issues that must be addressed and the GEM has shown to be able to deal with both of them. In this work, a stack of three GEMs with different pitches has been studied as a possible future approach for ion-backflow suppression to be used in TPCs and other detection concepts. With this approach, an ion backflow of 1 % with an energy resolution of 12 % at 5.9 keV has been achieved with the detector operating in an Ar/CO2 (90/10) mixture at a gain of ~ 2000.Comment: 15 pages, 11 figure

    Coherent evolution via reservoir driven holonomy

    Get PDF
    We show that in the limit of strongly interacting environment a system initially prepared in a Decoherence Free Subspace (DFS) coherently evolves in time, adiabatically following the changes of the DFS. If the reservoir cyclicly evolves in time, the DFS states acquire an holonomy.Comment: 4 page

    Controlling the dynamics of a coupled atom-cavity system by pure dephasing : basics and potential applications in nanophotonics

    Full text link
    The influence of pure dephasing on the dynamics of the coupling between a two-level atom and a cavity mode is systematically addressed. We have derived an effective atom-cavity coupling rate that is shown to be a key parameter in the physics of the problem, allowing to generalize the known expression for the Purcell factor to the case of broad emitters, and to define strategies to optimize the performances of broad emitters-based single photon sources. Moreover, pure dephasing is shown to be able to restore lasing in presence of detuning, a further demonstration that decoherence can be seen as a fundamental resource in solid-state cavity quantum electrodynamics, offering appealing perspectives in the context of advanced nano-photonic devices.Comment: 10 pages, 7 figure

    Emergence of classicality in small number entangled systems

    Full text link
    We show the transition from a fully quantized interaction to a semiclassical one in entangled small number quantum systems using the quantum trajectories approach. In particular, we simulate the microwave Ramsey zones used in Rydberg atom interferometry, filling in the gap between the strongly entangling Jaynes Cummings evolution and the semiclassical rotation of the atomic internal states. We also correlate the information flowing with leaking photons to the entanglement generation between cavity field and flying atom and detail the roles played by the strong dissipation and the external driving force in preserving atomic coherence through the interaction.Comment: 4 pages, 6 figure

    Crescimento inicial de milho em solo adubado com diferentes compostos orgânicos.

    Get PDF
    Foram elaborados cinco compostos orgânicos com diferentes composições, todos a base de esterco caprino, bagaço de coco e capim elefante, enriquecidos com torta de mamona, fosfato natural de gafsa e sulfato de potássio, de modo que, a final, cada pilha tivesse concentrações diferenciadas de nutrientes. O experimento foi montado em vasos contendo solo e os compostos preparados, dispostos em delineamento experimental inteiramente casualisado,, com seis tratamentos, sendo uma testemunha, e quatro repetições. Aos 28 dias após o plantio foi efetuado o corte das plantas, avaliando-se o número de folhas, a altura das plantas, o diâmetro do colo e o peso de matéria seca. De um modo geral, os compostos promoveram maior crescimento das plantas de milho que a testemunha (sem composto) com destaque para o composto de número 22 (77% de bagaço de coco, 20% de esterco caprino e 3% de sulfato de potássio)
    corecore