27 research outputs found

    Optical Gating of Resonance Fluorescence from a Single Germanium Vacancy Color Center in Diamond

    Full text link
    © 2019 American Physical Society. Scalable quantum photonic networks require coherent excitation of quantum emitters. However, many solid-state systems can undergo a transition to a dark shelving state that inhibits the resonance fluorescence. Here, we demonstrate that by a controlled gating using a weak nonresonant laser, the resonant fluorescence can be recovered and amplified for single germanium vacancies. Employing the gated resonance excitation, we achieve optically stable resonance fluorescence of germanium vacancy centers. Our results are pivotal for the deployment of diamond color centers as reliable building blocks for scalable solid-state quantum networks

    Photonic crystal cavities from hexagonal boron nitride

    Get PDF
    © 2018 The Author(s). Development of scalable quantum photonic technologies requires on-chip integration of photonic components. Recently, hexagonal boron nitride (hBN) has emerged as a promising platform, following reports of hyperbolic phonon-polaritons and optically stable, ultra-bright quantum emitters. However, exploitation of hBN in scalable, on-chip nanophotonic circuits and cavity quantum electrodynamics (QED) experiments requires robust techniques for the fabrication of high-quality optical resonators. In this letter, we design and engineer suspended photonic crystal cavities from hBN and demonstrate quality (Q) factors in excess of 2000. Subsequently, we show deterministic, iterative tuning of individual cavities by direct-write EBIE without significant degradation of the Q-factor. The demonstration of tunable cavities made from hBN is an unprecedented advance in nanophotonics based on van der Waals materials. Our results and hBN processing methods open up promising avenues for solid-state systems with applications in integrated quantum photonics, polaritonics and cavity QED experiments

    Valley Polarization Enhancement Induced by a Single Chiral Nanoparticle

    Full text link
    Valley polarization is amongst the most critical attributes of atomically thin materials. However, achieving a high contrast from monolayer transition metal dichalcogenides (TMDs) has so far been challenging. In this work, a giant valley polarization contrast up to 45% from a monolayer WS2 has been achieved at room temperature by using a single chiral plasmonic nanoparticle. The increased contrast is attributed to the selective enhancement of both the excitation and the emission rate having one particular handedness of the circular polarization. The experimental results were corroborated by the optical simulation using finite-difference time-domain (FDTD) method. Additionally, the single chiral nanoparticle enabled the observation of valley-polarized luminescence with a linear excitation. Our results provide a promising pathway to enhance valley contrast from monolayer TMDs and utilize them for nanophotonic devices

    Quasi-BIC Resonant Enhancement of Second-Harmonic Generation in WS2 Monolayers.

    Full text link
    Atomically thin monolayers of transition metal dichalcogenides (TMDs) have emerged as a promising class of novel materials for optoelectronics and nonlinear optics. However, the intrinsic nonlinearity of TMD monolayers is weak, limiting their functionalities for nonlinear optical processes such as frequency conversion. Here we boost the effective nonlinear susceptibility of a TMD monolayer by integrating it with a resonant dielectric metasurface that supports pronounced optical resonances with high quality factors: bound states in the continuum (BICs). We demonstrate that a WS2 monolayer combined with a silicon metasurface hosting BICs exhibits enhanced second-harmonic intensity by more than 3 orders of magnitude relative to a WS2 monolayer on top of a flat silicon film of the same thickness. Our work suggests a pathway to employ high-index dielectric metasurfaces as hybrid structures for enhancement of TMD nonlinearities with applications in nonlinear microscopy, optoelectronics, and signal processing

    One-Step Nanoscale Patterning of Silver Nanowire-Nitride Heterostructures Using Substrate-Assisted Chemical Etching

    Full text link
    © 2018 American Chemical Society. Nanoscale etching and patterning of noble metals such as copper, silver, and gold are extremely difficult to achieve due to the low volatility of group 11 metal compounds. Here, we introduce a method of nanoscale chemical etching that involves reactions between H2O adsorbates and N radicals generated from electron-beam-induced etching (EBIE) of a hexagonal boron nitride or AlN substrate to achieve efficient and highly localized chemical etching of Ag nanowires and the underlying substrate. The volatilization of noble metal nanowires by radical species generated during EBIE of the underlying substrate represents a new class of EBIE reactions, which we term "substrate-assisted chemical etching"

    Photonic Nanostructures from Hexagonal Boron Nitride

    Full text link
    © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Growing interest in devices based on layered van der Waals (vdW) materials is motivating the development of new nanofabrication methods. Hexagonal boron nitride (hBN) is one of the most promising materials for studies of quantum photonics and phonon polaritonics. A promising nanofabrication process used to fabricate several hBN photonic devices using a hybrid reactive ion etching (RIE) and electron beam-induced etching (EBIE) technique is reported in detail here. The shortcomings and benefits of RIE and EBIE are highlighted and the utility of the hybrid approach for the fabrication of suspended and supported device structures with nanoscale features and highly vertical sidewalls are demonstrated. Functionality of the fabricated devices is proven by measurements of high-quality cavity optical modes (Q ≈ 1500). This nanofabrication approach constitutes an advance toward an integrated, monolithic quantum photonics platform based on hBN and other layered vdW materials

    Generation of Spin Defects in Hexagonal Boron Nitride

    Full text link
    © 2020 American Chemical Society. Two-dimensional hexagonal boron nitride offers intriguing opportunities for advanced studies of light-matter interaction at the nanoscale, specifically for realizations in quantum nanophotonics. Here, we demonstrate the generation of optically addressable spin defects based on the negatively charged boron vacancy (VB-) center. We show that these centers can be created in exfoliated hexagonal boron nitride using a variety of focused ion beams (nitrogen, xenon, and argon). Using a combination of laser and resonant microwave excitation, we carry out optically detected magnetic resonance spectroscopy measurements, which reveal a zero-field ground state splitting for the defect of ∼3.46 GHz. We also perform photoluminescence excitation spectroscopy and temperature-dependent photoluminescence measurements to elucidate the photophysical properties of the VB- centers. Our results are important for advanced quantum and nanophotonics realizations involving manipulation and readout of spin defects in hexagonal boron nitride

    Three-Dimensional Nanothermistors for Thermal Probing

    Full text link
    Copyright © 2019 American Chemical Society. Accessing the thermal properties of materials or even full devices is a highly relevant topic in research and development. Along with the ongoing trend toward smaller feature sizes, the demands on appropriate instrumentation to access surface temperatures with high thermal and lateral resolution also increase. Scanning thermal microscopy is one of the most powerful technologies to fulfill this task down to the sub-100 nm regime, which, however, strongly depends on the nanoprobe design. In this study, we introduce a three-dimensional (3D) nanoprobe concept, which acts as a nanothermistor to access surface temperatures. Fabrication of nanobridges is done via 3D nanoprinting using focused electron beams, which allows direct-write fabrication on prestructured, self-sensing cantilever. As individual branch dimensions are in the sub-100 nm regime, mechanical stability is first studied by a combined approach of finite-element simulation and scanning electron microscopy-assisted in situ atomic force microscopy (AFM) measurements. After deriving the design rules for mechanically stable 3D nanobridges with vertical stiffness up to 50 N m-1, a material tuning approach is introduced to increase mechanical wear resistance at the tip apex for high-quality AFM imaging at high scan speeds. Finally, we demonstrate the electrical response in dependence of temperature and find a negative temperature coefficient of -(0.75 ± 0.2) 10-3 K-1 and sensing rates of 30 ± 1 ms K-1 at noise levels of ±0.5 K, which underlines the potential of our concept.

    Coupling Hexagonal Boron Nitride Quantum Emitters to Photonic Crystal Cavities.

    Full text link
    Quantum photonics technologies require a scalable approach for the integration of nonclassical light sources with photonic resonators to achieve strong light confinement and enhancement of quantum light emission. Point defects from hexagonal boron nitride (hBN) are among the front runners for single photon sources due to their ultra-bright emission; however, the coupling of hBN defects to photonic crystal cavities has so far remained elusive. Here we demonstrate on-chip integration of hBN quantum emitters with photonic crystal cavities from silicon nitride (Si3N4) and achieve an experimentally measured quality factor (Q-factor) of 3300 for hBN/Si3N4 hybrid cavities. We observed 6-fold photoluminescence enhancement of an hBN single photon emission at room temperature. Our work will be useful for further development of cavity quantum electrodynamic experiments and on-chip integration of two-dimensional (2D) materials
    corecore