12,886 research outputs found
Design aspects of a solar array drive for spot, with a high platform stability objective
A solar array drive mechanism (MEGS) for the SPOT platform, which is a prototype of a multimission platform, is described. High-resolution cameras and other optical instruments are carried by the platform, requiring excellent platform stability in order to obtain high-quality pictures. Therefore, a severe requirement for the MEGS is the low level of disturbing torques it may generate considering the 0.6 times 10 to the minus 3 power deg/sec stability required. The mechanical design aspects aiming at reducing the mean friction torque, and therefore its fluctuations, are described as well as the method of compensation of the motor imperfections. It was concluded, however, that this is not sufficient to reach the stability requirement
Self-similar solutions with fat tails for Smoluchowski's coagulation equation with locally bounded kernels
The existence of self-similar solutions with fat tails for Smoluchowski's
coagulation equation has so far only been established for the solvable and the
diagonal kernel. In this paper we prove the existence of such self-similar
solutions for continuous kernels that are homogeneous of degree and satisfy . More precisely,
for any we establish the existence of a continuous weak
self-similar profile with decay as
Energy Conversion Using New Thermoelectric Generator
During recent years, microelectronics helped to develop complex and varied
technologies. It appears that many of these technologies can be applied
successfully to realize Seebeck micro generators: photolithography and
deposition methods allow to elaborate thin thermoelectric structures at the
micro-scale level. Our goal is to scavenge energy by developing a miniature
power source for operating electronic components. First Bi and Sb micro-devices
on silicon glass substrate have been manufactured with an area of 1cm2
including more than one hundred junctions. Each step of process fabrication has
been optimized: photolithography, deposition process, anneals conditions and
metallic connections. Different device structures have been realized with
different micro-line dimensions. Each devices performance will be reviewed and
discussed in function of their design structure.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
Bi-defects of Nematic Surfactant Bilayers
We consider the effects of the coupling between the orientational order of
the two monolayers in flat nematic bilayers. We show that the presence of a
topological defect on one bilayer generates a nontrivial orientational texture
on both monolayers. Therefore, one cannot consider isolated defects on one
monolayer, but rather associated pairs of defects on either monolayer, which we
call bi-defects. Bi-defects generally produce walls, such that the textures of
the two monolayers are identical outside the walls, and different in their
interior. We suggest some experimental conditions in which these structures
could be observed.Comment: RevTeX, 4 pages, 3 figure
Asymptotics of self-similar solutions to coagulation equations with product kernel
We consider mass-conserving self-similar solutions for Smoluchowski's
coagulation equation with kernel with
. It is known that such self-similar solutions
satisfy that is bounded above and below as . In
this paper we describe in detail via formal asymptotics the qualitative
behavior of a suitably rescaled function in the limit . It turns out that as . As becomes larger
develops peaks of height that are separated by large regions
where is small. Finally, converges to zero exponentially fast as . Our analysis is based on different approximations of a nonlocal
operator, that reduces the original equation in certain regimes to a system of
ODE
Determination of the interactions in confined macroscopic Wigner islands: theory and experiments
Macroscopic Wigner islands present an interesting complementary approach to
explore the properties of two-dimensional confined particles systems. In this
work, we characterize theoretically and experimentally the interaction between
their basic components, viz., conducting spheres lying on the bottom electrode
of a plane condenser. We show that the interaction energy can be approximately
described by a decaying exponential as well as by a modified Bessel function of
the second kind. In particular, this implies that the interactions in this
system, whose characteristics are easily controllable, are the same as those
between vortices in type-II superconductors.Comment: 8 pages, 8 figure
Universal analytic properties of noise. Introducing the J-Matrix formalism
We propose a new method in the spectral analysis of noisy time-series data
for damped oscillators. From the Jacobi three terms recursive relation for the
denominators of the Pad\'e Approximations built on the well-known Z-transform
of an infinite time-series, we build an Hilbert space operator, a J-Operator,
where each bound state (inside the unit circle in the complex plane) is simply
associated to one damped oscillator while the continuous spectrum of the
J-Operator, which lies on the unit circle itself, is shown to represent the
noise. Signal and noise are thus clearly separated in the complex plane. For a
finite time series of length 2N, the J-operator is replaced by a finite order
J-Matrix J_N, having N eigenvalues which are time reversal covariant. Different
classes of input noise, such as blank (white and uniform), Gaussian and pink,
are discussed in detail, the J-Matrix formalism allowing us to efficiently
calculate hundreds of poles of the Z-transform. Evidence of a universal
behaviour in the final statistical distribution of the associated poles and
zeros of the Z-transform is shown. In particular the poles and zeros tend, when
the length of the time series goes to infinity, to a uniform angular
distribution on the unit circle. Therefore at finite order, the roots of unity
in the complex plane appear to be noise attractors. We show that the
Z-transform presents the exceptional feature of allowing lossless undersampling
and how to make use of this property. A few basic examples are given to suggest
the power of the proposed method.Comment: 14 pages, 8 figure
Models of Passive and Reactive Tracer Motion: an Application of Ito Calculus
By means of Ito calculus it is possible to find, in a straight-forward way,
the analytical solution to some equations related to the passive tracer
transport problem in a velocity field that obeys the multidimensional Burgers
equation and to a simple model of reactive tracer motion.Comment: revised version 7 pages, Latex, to appear as a letter to J. of
Physics
- …