17 research outputs found

    Organizational Water Footprint to Support Decision Making: a Case Study for a German Technological Solutions Provider for the Plumbing Industry

    Get PDF
    With water scarcity representing an increasing threat to humans, the environment and the economy, companies are interested in exploring how their operations and supply chains affect water resources globally. To allow for systematically compiling the water footprint at the company level, the organizational water footprint method based on ISO 14046 and ISO/TS 14072 was developed. This paper presents the first complete organizational water scarcity footprint case study carried out for Neoperl GmbH, a German company that offers innovative solutions regarding drinking water for the plumbing industry. The cradle-to-gate assessment for one year includes, besides facility-based production activities, purchased materials, electricity and fuels, and supporting activities, such as company vehicles and infrastructure. Neoperl’s total freshwater consumption amounts to approximately 110,000 m3, 96% thereof being attributable to the supply chain, with freshwater consumption through purchased metals playing the predominant role. Metals (mainly stainless steel and brass) are major hotspots, also when considering the water scarcity-related local impacts resulting from freshwater consumption, which mainly affect China and Chile. These results can be used to improve the company’s supply chain water use in cooperation with internal and external stakeholders by means of, e.g., sustainable purchase strategies or eco-design options to substitute water intensive materials.BMBF, 02WGR1429, GROW - Verbundprojekt WELLE: Wasserfußabdruck für Unternehmen - Lokale Maßnahmen in Globalen WertschöpfungskettenDFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Comprehensive approach for evaluating different resource types – Case study of abiotic and biotic resource use assessment methodologies

    Get PDF
    Due to steadily increasing resource demand and accompanying raising public awareness, a variety of assessment methodologies evaluating resource use and its consequences were published in the last years. Existing methodologies are typically developed considering the specific characteristics of one particular resource type and as consequence are not suitable for cross-cutting assessment of different resource types. This paper proposes an 3-step approach for combining different resource use assessment methodologies allowing for a consistent assessment of product systems using different resource types. The first steps evaluate if the considered dimensions, categories, indicators, indicator models and underlying data are consistent. When this is the case, they can be included in the combined methodology without further adjustments. Differences are identified simultaneously and addressed in the subsequent steps. Within the steps guidance is provided on how the dimensions, categories and indicators of the methodologies can be adjusted to fit in the combined methodology. In a case study the proposed approach is applied to two methodologies developed by the authors assessing abiotic (ESSENZ method) and biotic resources and raw materials (BIRD method). The ESSENZ method consists of four dimensions, which are quantified by overall 21 categories and indicators. The BIRD method takes into account five dimensions and 24 corresponding categories and indicators. As none of the considered dimension of the two methodologies match, comparison of the considered resource types as well as application in a case study is not possible. By applying the proposed approach all five dimensions and 25 of the overall 27 categories and indicators can be integrated in the combined approach for a consistent assessment of abiotic and biotic resources and raw materials. The obtained combined methodology is then applied to three shelves made out of metal, wood and plastic. It could be shown that the introduced approach provides meaningful guidance on how to combine different resource use assessment methodologies and increases the findings gained from a combined and consistent assessment.DFG,353450346, Bewertung der Inanspruchnahme biotischer und abiotischer Ressourcen im Mobilitätssektor -Entwicklung von Ökobilanz-kompatiblen Bewertungskriterien, -methoden und -konzepte

    The effect of industry delocalization on global energy use: A global sectoral perspective

    Get PDF
    Sectoral production technologies differ largely across countries, so do sectoral energy intensities. Hence, shifts in production locations within global sectors, possibly caused by environmental regulations, are likely to have an impact on aggregated energy usage and emissions. Applying a Logarithmic Mean Divisia Index decomposition we decompose changes of sectoral energy use from 2001–2011 into three effects: (sectoral) value added, energy efficiency and delocalization, which in this paper is conceived as a structural effect within sectors, between regions. Our results show that although economic activity and technological progress dominate global energy use developments, for most sectors a delocalization towards less efficient production places is ongoing. It contributes to annual increases in energy use in the range of 1–6%. Especially, manufacturing sectors, which are among the most energy consuming sectors, reveal significant increases in energy usage due to delocalization since 2004. This development is accompanied by declining energy intensity improvement rates, indicating that delocalization induces second order effects.BMBF, 01LS1610B, Klimapolitische Maßnahmen und Transformationspfade zur Begrenzung der globalen Erwärmung auf 1.5°C (PEP1p5)DFG, SFB 1026, Sustainable Manufacturing - Globale Wertschöpfung nachhaltig gestalte

    Organizational water footprint

    Get PDF
    Freshwater is a vital resource for humans and ecosystems but is scarce in many regions around the world. Organizations measure and manage direct water use at their premises but usually neglect the indirect water use associated with global supply chains – even though the latter can be higher by several orders of magnitude. As of 2015, there was no standardized life-cycle-based approach for analysing the water consumption of an organization. Against this background, the BMBF funded research project “Water Footprint for Organizations – Local Measures in Global Supply Chains (WELLE)” has been launched by TU Berlin, Evonik, German Copper Institute, Neoperl, thinkstep and Volkswagen. The project aims to support organizations in determining their complete Organizational Water Footprint, identifying local hotspots in global supply chains and taking action to reduce their water use and mitigate water stress at critical basins. Within the WELLE project a method for analysing an Organizational Water Footprint has been developed, which analyses an organization’s water use and resulting local impacts throughout its entire value chain. In other words, the Organizational Water Footprint considers not only the direct water use at production facilities, but also the water used indirectly for energy generation and raw material production (upstream in the supply chain) as well as water use during the use and end-of-life phases of products (downstream). The Organizational Water Footprint method builds on two environmental assessment frameworks which have been identified as suitable for the purpose of this project: Water Footprint (ISO 14046, 2014 and Organizational Life Cycle Assessment (UNEP 2015). To support stakeholders in conducting Organizational Water Footprint studies, this guidance document was developed, which presents the method in a clear and concise way by illustrating each step with a practical example. By analysing their Water Footprints, organizations can determine water use and resulting local impacts at premises and “beyond the fence” along global supply chains. In this way they can reduce water risks and contribute to a more sustainable use of the world’s limited freshwater resources

    Organizational Life Cycle Assessment of a Service Providing SME for Renewable Energy Projects (PV and Wind) in the United Kingdom

    Get PDF
    Companies are increasingly interested in reducing their environmental footprint. Thereby, they face the challenge of identifying and mitigating their specific impacts and hotspots and simultaneously avoid burden shifting. The organizational life cycle assessment (OLCA) method was conceived and successfully tested for the assessment if companies’ potential environmental impacts. Still, the method poses methodological challenges for the application to service providing organizations. In this paper, OLCA was applied to a service providing SME in the photovoltaic and wind energy business in the United Kingdom. The environmental impact profile of the reporting organization is dominated by transport activities, including the technicians’ trips to the solar farms, employee commuting, and business travels. According to the main goals of the study (gaining insights in internal operations and improving organizational procedures), recommendations to reduce travel-related impacts are provided. For existing methodological challenges like selecting the reporting flow and setting the system boundaries, innovative solutions like defining multiple reporting flows for different activities and to partly include service receiving objects in system boundaries are discussed with the aim to facilitate future applications.TU Berlin, Open-Access-Mittel – 202

    Der organisationsbezogene WasserfuĂźabdruck: Methode und Anwendung

    No full text
    The availability and quality of water resources are increasingly endangered. Aware of the environmental and business risks related to water scarcity and pollution, organizational water users face three main challenge in protecting the water resources needed along their chain chains: measuring their water input and discharge quality and quantity, identifying their geographical location and the related local impacts, and putting into place mitigation measures. This thesis aims at enabling organizations to analyze their water use and resulting local impacts along the entire value chain. The research approach is articulated in two steps. First, methodological development needs are identified via the analysis of existing approaches to assess water-related environmental impacts of organizations and via the evaluation of existing applications of the organizational life cycle assessment method. Second, the organizational water footprint method and solutions to facilitate its application are developed and tested in an industry case study. The assessment of existing approaches highlights the suitability of the water footprint method based on ISO 14046 as a starting point for method development. To better account for the organizational scope, it is integrated by organization-specific requirements of the organizational life cycle assessment scheme based on ISO/TS 14072. The so developed organizational water footprint method offers recommendations on how to cope with diverging requirements of ISO 14046 and ISO/TS 14072. First, the method should not support comparisons between different organizations intended for public disclosure due to the specific characteristics of each organization. Second, it is recommended to account explicitly for both the value-chain and the organizational dimension of the system boundary. Third, the option of system expansion should be excluded as a solution to avoid allocation. To support data collection, an activity prioritization scheme for water scarcity footprints is developed. The scheme highlights potential high-impact activities like purchased energy, minerals and agricultural products, as well as the role of water or energy consuming use phases. The application of the organizational water footprint method for water scarcity assessment studies is facilitated by the organizational water footprint tool. The tool allows entering the purchased quantities of more than 100 materials and energy carriers following the organizational activity categories and supports the assessment of supporting activities through underlying aggregated datasets. The linkage to geographically explicit inventory datasets facilitates the calculation of local water consumption and related local impacts on water scarcity. The organizational water footprint method and tool and the activity prioritization scheme are successfully tested within a water scarcity footprint case study for the company Neoperl GmbH, a German provider of technological solutions for the plumbing industry. The assessment of direct, indirect upstream and supporting activities shows hotspots in the metal supply (purchased brass and stainless steel), whose major impacts on water scarcity can be localized in China and Chile. An ecodesign solution (material substitution) to reduce the company’s organizational water footprint is preliminarly assessed. The results of the thesis improve the documentation, scientific acceptance and applicability of the water footprint method for organizations. Still, there is room for improvement. First, organizational water footprint studies could profit from additional geographically explicit datasets to increase the precision of water scarcity assessments. Second, application-related solutions like activity prioritization schemes and aggregated datasets for supporting activities will be needed also for the assessment of water quality impacts in order to support organizations in calculating comprehensive water footprint profiles. Third, the outlined linkage between water footprint hotspots and mitigation measures needs to be tested in further case studies to unfold the method’s transformative potential. Last, the current trend towards the assessment of large-scale systems raises questions on the applicability of organizational frameworks to e.g. territories or sectors, and on the choice of impact assessment approaches. Addressing these challenges will contribute to further improve organizational water footprint and spread life cycle thinking.Die Verfügbarkeit und Qualität von Wasserressourcen sind zunehmend gefährdet. Da mit Wasserknappheit und -verschmutzung auch verschiedene Umwelt- und Geschäftsrisiken zusammenhängen, stellen sich für wassernutzende Organisationen und ihre Wertschöpfungsketten drei Herausforderungen: die Messung der Qualität und Quantität des entnommenen und eingeleiteten Wassers, die Ermittlung der geografischen Lage des Wasserverbrauchs und der damit verbundenen lokalen Auswirkungen sowie die Umsetzung von Minderungsmaßnahmen. Ziel dieser Arbeit ist es, Organisationen bei der Analyse ihrer Wassernutzung und der daraus resultierenden lokalen Auswirkungen entlang der gesamten Wertschöpfungskette zu unterstützen. Der Forschungsansatz ist in zwei Schritten gegliedert. Zunächst werden mittels einer semi-quantitativen multikriteriellen Bewertung Lehren aus bestehenden Ansätzen zur Bewertung der wasserbezogenen Umweltauswirkungen von Organisationen gezogen und die bestehende Erfahrung in der organisationsbezogenen Ökobilanz berücksichtigt. Im zweiten Schritt werden die identifizierten Forschungslücken in Bezug auf Methodenentwicklung und Methodenanwendung adressiert und anhand einer Industriefallstudie getestet. Aus der Bewertung bestehender Ansätze zeigt sich die Eignung der auf ISO 14046 basierenden Wasserfußabdruckmethode als Ausgangspunkt für die Methodenentwicklung. Um die Berücksichtigung des organisationsspezifischen Rahmens sicherzustellen, wird diese Methode durch Anforderungen der auf ISO/TS 14072 basierenden organisationsbezogenen Ökobilanzmethode ergänzt. Die so entwickelte Methode des organisationsbezogenen Wasserfußabdrucks stellt Empfehlungen zum Umgang mit divergierenden Anforderungen von ISO 14046 und ISO/TS 14072 bereit. Erstens, die Methode sollte für die Veröffentlichung vorgesehene vergleichende Aussagen zwischen verschiedenen Organisationen nicht unterstützen. Zweitens, eine explizite Berücksichtigung der Zweidimensionalität der systemgrenzen wird empfohlen. Drittens, die Option der Systemgrenzenerweiterung zwecks Allokationsvermeidung sollte für Organisationen ausgeschlossen werden. Zur Unterstützung der Datenerhebung wird ein Tätigkeitspriorisierungsschema entwickelt, aus welchem die potenziell hohen Auswirkungen einiger Tätigkeiten wie eingekaufte Energie, Mineralien und landwirtschaftliche Produkte sowie wasser- oder energieverbrauchende Nutzungsphasen hervorgehen. Die Anwendung der organisationsbezogenen Wasserfußabdruckmethode wird durch das Wasserfußabdruck-Tool für Organisationen vereinfacht. Das Tool erlaubt die Eingabe der eingekauften Mengen von über 100 Energieträger und Materialien entsprechend der organisationsbezogenen Tätigkeitskategorisierung und unterstützt die Bewertung von unterstützenden Organisationstätigkeiten durch unterliegenden aggregierten Datensätze. Die Verknüpfung mit geografisch expliziten Inventardaten vereinfacht die Berechnung des lokalen Wasserverbrauchs und der lokalen Auswirkungen auf Wasserknappheit. Die organisationsbezogene Wasserfußabdruckmethode, das Online-Tool und das Tätigkeitspriorisierungsschema werden erfolgreich in einer Fallstudie zum Wasserknappheitsfußabdruck der Firma Neoperl GmbH, ein deutscher Anbieter technologischer Lösungen für die Sanitärindustrie, getestet. Die Bewertung direkter, indirekter vorgelagerter und unterstützender Tätigkeiten zeigen Hotspots bei eingekauften Metallen (Messing und Edelstahl), deren signifikanteste Auswirkungen auf Wasserknappheit in China und Chile zu verzeichnen sind. Eine Ökodesign-Lösung (Materialsubstitution) zur Minderung von Neoperls Wasserfußabdruck wird vorab bewertet. Die Ergebnisse dieser Arbeit leisten einen Beitrag zur Dokumentation, wissenschaftlichen Akzeptanz und Anwendbarkeit der Wasserfußabdruckmethode für Organisationen. Dennoch ist das Verbesserungspotenzial nicht ausgeschöpft. Erstens, zukünftige Studien könnten von zusätzlichen geografisch expliziten Datensätzen zur Erhöhung der Genauigkeit von Wasserknappheitsbewertungen profitieren. Zweitens, anwendungsbezogene Lösungen für die Bewertung der Wasserqualität werden benötigt, um Organisationen bei der Berechnung umfassender Wasserfußabdruckprofile zu unterstützen. Drittens, die skizzierte Verknüpfung zwischen Wasserfußabdruck-Hotspots und Minderungsoptionen sollte in weiteren Fallstudien getestet werden, um das Transformationspotenzial der Methode zu entfalten. Zuletzt wirft der aktuelle Trend zur Bewertung von Systemen wie Städten oder Wirtschaftssektoren Fragen zur Anwendbarkeit des organisationsbezogenen Untersuchungsrahmen und zur Wahl geeigneter Wirkungsabschätzungsmethoden auf. Die Bewältigung dieser Herausforderungen kann maßgeblich zur Verbreitung des Lebenszyklus-Ansatzes beitragen.BMBF, 02WGR1429A, GROW - Verbundprojekt WELLE: Wasserfußabdruck für Unternehmen - Lokale Maßnahmen in Globalen Wertschöpfungskette

    Comment to “Marginal and non-marginal approaches in characterization: how context and scale affect the selection of an adequate characterization factor. The AWARE model example”

    No full text
    PURPOSE: Case studies on life cycle assessments frequently admit that the precision of their outcome could be undermined due to temporal issues, though they usually refrain from offering much more detail. In addition, available overview papers and reviews on problems and challenges in LCA do not address the whole range of temporal issues. As those are major sources of inaccuracies and influence each other, it is important to get a clear picture of them, to close gaps in definitions, to systemize temporal issues, and to show their interdependencies and proposed solutions. In order to identify the state of science on those questions, we conducted a systematic literature review. METHODS: We first systematized temporal issues based on ISO 14040ff and divided them into six types: time horizon, discounting, temporal resolution of the inventory, time-dependent characterization, dynamic weighting, and time-dependent normalization. Building on that, we identified suitable search terms and developed an analysis grid for the content analysis. We included only methodological papers and case studies with original findings on solutions for temporal issues. Bibliographic data, impact types, industrial fields, and methodological contributions were analyzed. RESULTS AND DISCUSSION: Literature differentiates between different types of time horizons. There is one for the whole assessment, defined in goal and scope, one for the life cycle inventory, and one for the impact characterization. Setting a time horizon for the assessment is regarded as equivalent to the application of discounting. Both very long and very short time horizons of the assessment are not practical depending on the topic assessed in the LCA. Very short ones would offend the principle of intergenerational equality, while very long ones would marginalize short-term actions and thereby reduce incentives to act. There is consensus in the literature that temporally differentiated life cycle inventories and time-dependent, or at least time horizon dependent, characterization improve the accuracy of LCA. Generally, dynamic life cycle assessments are attractive for companies because the calculation results are not only more accurate but are often also lower than in static life cycle assessments. CONCLUSION: The main questions where we did not find consensus are the issue of the length of the time horizon of the assessment and the issue of discounting. Those are regarded as subjective and are encountered with sensitivity or scenario analysis. Further investigations should be taken for a better understanding of this issue and for concrete solutions because their influence on the results of life cycle assessments is often fundamental

    From Life Cycle Costing to Economic Life Cycle Assessment—Introducing an Economic Impact Pathway

    No full text
    Economic activities play a key role in human societies by providing goods and services through production, distribution, and exchange. At the same time, economic activities through common focus on short-term profitability may cause global crisis at all levels. The inclusion of three dimensions—environment, economy, and society—when measuring progress towards sustainable development has accordingly reached consensus. In this context, the Life cycle sustainability assessment (LCSA) framework has been developed for assessing the sustainability performance of products through Life cycle assessment (LCA), Life cycle costing (LCC), and Social life cycle assessment (SLCA). Yet, the focus of common economic assessments, by means of LCC, is still on financial costs. However, as economic activities may have a wide range of positive and negative consequences, it seems particularly important to extend the scope of economic assessments. Foremost, as the limitation to monetary values triggers inconsistent implementation practice. Further aspects like missing assessment targets, uncertainty, common goods, or even missing ownership remain unconsidered. Therefore, we propose economic life cycle assessment (EcLCA) for representing the economic pillar within the LCSA framework, following the requirements of ISO 14044, and introducing an economic impact pathway including midpoint and endpoint categories towards defined areas of protection (AoPs). We identify important target ratios by means of economic AoPs, which drive economic activities on the macro- and microeconomic level. Furthermore, we provide suggestions for midpoint and endpoint indicators representing the defined categories. With the presented EcLCA framework, a first step towards the inclusion of economic impacts within LCSA has been made. Relations between economic activities and resulting consequences are displayed, going beyond the cost-driven view of classical LCC. Further research and fine-tuning of the identified midpoint and endpoint categories and related indicators is, however, needed to enable a valid and consistent assessment basis for fostering the practical implementation of EcLCA and LCSA

    Organisationsbezogener Wasser-FuĂźabdruck : Analyse des Wasserverbrauchs und Minderung von Wasserknappheit entlang globaler Lieferketten

    Get PDF
    Freshwater is a vital resource for humans and ecosystems but is scarce in many regions around the world. Organizations measure and manage direct water use at their premises but usually neglect the indirect water use associated with global supply chains – even though the latter can be higher by several orders of magnitude. As of 2015, there was no standardized life-cycle-based approach for analysing the water consumption of an organization. Against this background, the BMBF funded research project “Water Footprint for Organizations – Local Measures in Global Supply Chains (WELLE)” has been launched by TU Berlin, Evonik, German Copper Institute, Neoperl, thinkstep and Volkswagen. The project aims to support organizations in determining their complete Organizational Water Footprint, identifying local hotspots in global supply chains and taking action to reduce their water use and mitigate water stress at critical basins. Within the WELLE project a method for analysing an Organizational Water Footprint has been developed, which analyses an organization’s water use and resulting local impacts throughout its entire value chain. In other words, the Organizational Water Footprint considers not only the direct water use at production facilities, but also the water used indirectly for energy generation and raw material production (upstream in the supply chain) as well as water use during the use and end-of-life phases of products (downstream). The Organizational Water Footprint method builds on two environmental assessment frameworks which have been identified as suitable for the purpose of this project: Water Footprint (ISO 14046, 2014 and Organizational Life Cycle Assessment (UNEP 2015). To support stakeholders in conducting Organizational Water Footprint studies, this guidance document was developed, which presents the method in a clear and concise way by illustrating each step with a practical example. By analysing their Water Footprints, organizations can determine water use and resulting local impacts at premises and “beyond the fence” along global supply chains. In this way they can reduce water risks and contribute to a more sustainable use of the world’s limited freshwater resources.Süßwasser ist eine lebenswichtige Ressource für Menschen und Ökosysteme, ist aber in vielen Regionen der Welt knapp. Organisationen messen und managen den direkten Wasserverbrauch an ihrem Standort, vernachlässigen aber in der Regel den indirekten Wasserverbrauch, der mit globalen Lieferketten verbunden ist - obwohl Letzterer um mehrere Größenordnungen höher sein kann. Bis 2015 gab es keinen standardisierten lebenszyklusbasierten Ansatz, um den Wasserverbrauch einer Organisation zu analysieren. Vor diesem Hintergrund wurde das vom BMBF geförderte Forschungsprojekt "Water Footprint for Organizations - Local Measures in Global Supply Chains (WELLE)" von der TU Berlin, Evonik, dem Deutschen Kupferinstitut, Neoperl, thinkstep und Volkswagen gestartet. Das Projekt zielt darauf ab, Unternehmen dabei zu unterstützen, ihren kompletten organisatorischen Wasserfußabdruck zu bestimmen, lokale Hotspots in globalen Lieferketten zu identifizieren und Maßnahmen zu ergreifen, um ihren Wasserverbrauch zu reduzieren und den Wasserstress in wasserknappen Einzugsgebieten zu mindern. Im Rahmen des WELLE-Projekts wurde eine Methode zur Analyse eines Organisationsbezogenen Wasser Fußabdrucks entwickelt, die den Wasserverbrauch einer Organisation und die daraus resultierenden lokalen Auswirkungen entlang der gesamten Wertschöpfungskette analysiert. Das heißt, der organisationsbezogene Wasser Fußabdruck berücksichtigt nicht nur den direkten Wasserverbrauch in den Produktionsstätten, sondern auch den indirekten Wasserverbrauch für die Energieerzeugung und die Rohstoffproduktion (vorgelagert in der Lieferkette) sowie den Wasserverbrauch während der Nutzungs- und End-of-Life-Phase der Produktion (nachgelagert). Die Methode des organisationsbezogenen Wasser Fußabdrucks baut auf zwei Umweltbewertungsrichtlinien auf, die für den Zweck dieses Projekts als geeignet identifiziert wurden: Wasser Fußabdruck (ISO 14046, 2014) und organisationsbezogene Ökobilanzierung (UNEP 2015). Um Akteure bei der Durchführung von organisationsbezogenen Wasser Fußabdruck Studien zu unterstützen, wurde dieser Leitfaden entwickelt, der die Methode klar und übersichtlich darstellt und indem jeder Schritt mit einem praktischen Beispiel illustriert wird. Durch die Analyse ihres Wasser-Fußabdrucks können Organisationen den Wasserverbrauch und die daraus resultierenden lokalen Auswirkungen am Standort und entlang globaler Lieferketten ermitteln. Auf diese Weise können sie Wasserrisiken reduzieren und zu einem nachhaltigeren Umgang mit den begrenzten Süßwasserressourcen der Welt beitragen.BMBF, 02WGR1429A, GROW - Verbundprojekt WELLE: Wasserfußabdruck für Unternehmen - Lokale Maßnahmen in Globalen Wertschöpfungsketten, Teilprojekt

    Organizational water footprint: a methodological guidance

    No full text
    Purpose This paper proposes a practical methodological approach to assess the water footprint at the organizational level, in line with the current development of life-cycle based approaches toward the organizational scale on the one hand and footprint metrics on the other hand. This methodological development allows for organizational water footprint applications intended to inform management decisions and to alleviate water-related environmental impacts throughout the supply chain. Methods ISO 14046, dedicated to water footprint with a major focus on products, and ISO/TS 14072 for organizational LCA (O-LCA) are compared. A set of indications to carry out an organizational water footprint is identified based on: the requirements common to water footprint and organizational LCA; complementary methodological elements specified in only one of the standards; solutions to issues identified as conflicting. Additional application guidance on data collection prioritization for organizational water scarcity footprint studies is delivered based on the review of existing organizational case studies and comparative product or commodity studies. Results and discussion O-LCA and water footprint provide complementary requirements for the scoping phase and the inventory and impact assessment phase respectively, according to the different methodological foci. We identify conflicting or contradictory requirements related to (i) comparisons, (ii) system boundary definition, and (iii) approaches to avoid allocation. We recommend (i) avoiding comparisons in organizational water footprint studies, (ii) defining two-dimensional system boundaries (“life-cycle dimension” and “organizational dimension”), and (iii) avoiding system expansion. Additionally, when carrying out a water scarcity footprint for organizations, we suggest prioritizing data collection for direct activities, freshwater extraction and discharge, purchased energy, metals, agricultural products and biofuels, and, if water or energy consuming, the use phase. Conclusions The standards comparison allowed compiling a set of requirements for organizational water footprints. Combined with the targeted guidance to facilitate data collection for water scarcity footprint studies, this work can facilitate assessing the water footprint of organizations throughout their supply chains.BMBF, 02WGR1429A, GROW - Verbundprojekt WELLE: Wasserfußabdruck für Unternehmen - Lokale Maßnahmen in Globalen Wertschöpfungsketten, Teilprojekt
    corecore