46 research outputs found
GOCE orbit predictions for SLR tracking
After a descent phase of about half a year, the Gravity field and steady-state Ocean Circulation Explorer (GOCE) reached the final orbital altitude of the first measurement and operational phase (MOP-1) in September 2009. Due to this very low orbital altitude and the inactive drag compensation during descent, the generation of reliable predictions of the GOCE trajectory turned out to be a major challenge even for short prediction intervals. As predictions of good quality are a prerequisite for frequent ranging from the tracking network of the International Laser Ranging Service (ILRS), Satellite Laser Ranging (SLR) data of GOCE was very sparse at mission start and made it difficult to independently calibrate and optimize the orbit determination based on data of the Global Positioning System (GPS). In addition to the GOCE orbit predictions provided by the European Space Agency (ESA), the Astronomical Institute of the University of Bern (AIUB) started providing predictions on July 22, 2009, as part of the Level 1b to Level 2 data processing performed at AIUB. The predictions based on the 12-h ultra-rapid products of the International GNSS Service (IGS) were originally intended to primarily serve the daylight passes in the early evening hours over Europe. The corresponding along-track prediction errors were often kept below 50m during the descent phase and allowed for the first successful SLR tracking of GOCE over Europe on July 29, 2009, by the Zimmerwald observatory. Additional predictions based on the IGS 18-h ultra-rapid products are provided by AIUB since September 20, 2009, to further optimize the GOCE SLR tracking. In this article, the development of the GOCE prediction service at AIUB is presented, and the quality of the orbit predictions is assessed for periods with and without active drag compensation. The prediction quality is discussed as a function of the prediction interval, the quality of the input products for the GPS satellite orbits and clocks, and the availability of the GOCE GPS data. From the methodological point of view, different approaches for the treatment of the non-gravitational accelerations acting on the GOCE satellite are discussed and their impact on the prediction quality is assessed, in particular during the descent phase. Eventually, an outlook is given on the significance of GOCE SLR tracking to identify systematic errors in the GPS-based orbit determination, e.g., cross-track errors induced by mismodeled GOCE GPS phase center variations (PCVs
GOCE data, models, and applications : a review
With the launch of the Gravity field and Ocean Circulation Explorer (GOCE) in 2009 the science in gravity got another boost. After the time-lapse and long-wavelength studies from Gravity Recovery and Climate Experiment (GRACE) a new sensor was available for determination of the Earth's gravity field and geoid with high accuracy and spatial resolution. Equipped with a 6-component gradiometer and flying at an altitude of 260 km and less GOCE provides the most detailed measurements of Earth's gravity from space ever. On top, GOCE also provides gravity gradients, i.e., the three-dimensional second derivatives of the gravitational potential. This paper provides a review of the results presented at the ‘GOCE solid Earth workshop’ at the University of Twente, The Netherlands (2012), where an overview was given of the present status of the data models, and applications with GOCE which form the basis for this special issue and the review in this paper. An introduction will be given to the GOCE satellite followed by an overview of GOCE data and gravity models. The present state of GOCE related research in geodesy, oceanography and solid Earth sciences indicates the first steps taken to integrate GOCE in the different application fields. For all three fields an overview is given on the most recent scientific results and developments, and first results specifically focusing on these studies where GOCE data has made a unique contribution and provides insights that would not have been possible without GOC
The lunar gravity mission MAGIA: preliminary design and performances
The importance of an accurate model of the Moon gravity field has been assessed for future navigation missions orbiting and/or landing on the Moon, in order to use our natural satellite as an intermediate base for next solar system observations and exploration as well as for lunar resources mapping and exploitation. One of the main scientific goals of MAGIA mission, whose Phase A study has been recently funded by the Italian Space Agency (ASI), is the mapping of lunar gravitational anomalies, and in particular those on the hidden side of the Moon, with an accuracy of 1 mGal RMS at lunar surface in the global solution of the gravitational field up to degree and order 80. MAGIA gravimetric experiment is performed into two phases: the first one, along which the main satellite shall perform remote sensing of the Moon surface, foresees the use of Precise Orbit Determination (POD) data available from ground tracking of the main satellite for the determination of the long wavelength components of gravitational field. Improvement in the accuracy of POD results are expected by the use of ISA, the Italian accelerometer on board the main satellite. Additional gravitational data from recent missions, like Kaguya/Selene, could be used in order to enhance the accuracy of such results. In the second phase the medium/short wavelength components of gravitational field shall be obtained through a low-to-low (GRACE-like) Satellite-to-Satellite Tracking (SST) experiment. POD data shall be acquired during the whole mission duration, while the SST data shall be available after the remote sensing phase, when the sub-satellite shall be released from the main one and both satellites shall be left in a free-fall dynamics in the gravity field of the Moon. SST range-rate data between the two satellites shall be measured through an inter-satellite link with accuracy compliant with current state of art space qualified technology. SST processing and gravitational anomalies retrieval shall benefit from a second ISA accelerometer on the sub-satellite in order to decouple lunar gravitational signal from other accelerations. Experiment performance analysis shows that the stated scientific requirements can be achieved with a low mass and low cost sub-satellite, with a SST gravimetric mission of just few months
Modeling the Lunar Gravity Using Passive 3-Way Doppler Data from Lunar Prospector
During the month of July and August 1998 a six wees tracking campaig of Lunar Prospector was conducted at DLR/GSOC`s 30 m ground station at Weilheim. Throughout this period, entirely Passive 3-way Doppler data was collected with uplinks being provided by the Deep Space Nework stations at Madrid, Canberra and Goldstone. In total about 1,030,000 data points have been collected, providing for the first time a European tracking data set unseful for low lunar orbit and gravity field determination. The original count interval of 1 sec was reduced to 30 sec prior to the actual processing, thus reducing the data noise level, and, moreover, effectively removing the effect of periodic Doppler variations due to the 12 rpm spacecraft rotation. Several gravity field models have been derived, supporting investigations of the effect of various processing algorithms on the solution. Quality assessment is done using both the conventional methods of measurement fit and orbit consistency as wellas modern geodetic tools. While the gravity models may be inferior to one derived from a full-year cycle of continuous data, they mark an important step in European lunar gravity modeling and moreover demonstrate the readiness for more detailed investigations in the framework of the upcoming missions