253 research outputs found
Classification of Material Mixtures in Volume Data for Visualization and Modeling
Material classification is a key stop in creating computer graphics models and images from volume data, We present a new algorithm for identifying the distribution of different material types in volumetric datasets such as those produced with Magnetic Resonance Imaging (NMI) or Computed Tomography (CT). The algorithm assumes that voxels can contain more than one material, e.g. both muscle and fat; we wish to compute the relative proportion of each material in the voxels. Other classification methods have utilized Gaussian probability density functions to model the distribution of values within a dataset. These Gaussian basis functions work well for voxels with unmixed materials, but do not work well where the materials are mixed together. We extend this approach by deriving non-Gaussian "mixture" basis functions. We treat a voxel as a volume, not as a single point. We use the distribution of values within each voxel-sized volume to identify materials within the voxel using a probabilistic approach. The technique reduces the classification artifacts that occur along boundaries between materials. The technique is useful for making higher quality geometric models and renderings from volume data, and has the potential to make more accurate volume measurements. It also classifies noisy, low-resolution data well
Partial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms
The authors present a new algorithm for identifying the distribution of different material types in volumetric datasets such as those produced with magnetic resonance imaging (MRI) or computed tomography (CT). Because the authors allow for mixtures of materials and treat voxels as regions, their technique reduces errors that other classification techniques can create along boundaries between materials and is particularly useful for creating accurate geometric models and renderings from volume data. It also has the potential to make volume measurements more accurately and classifies noisy, low-resolution data well. There are two unusual aspects to the authors' approach. First, they assume that, due to partial-volume effects, or blurring, voxels can contain more than one material, e.g., both muscle and fat; the authors compute the relative proportion of each material in the voxels. Second, they incorporate information from neighboring voxels into the classification process by reconstructing a continuous function, Ο(x), from the samples and then looking at the distribution of values that Ο(x) takes on within the region of a voxel. This distribution of values is represented by a histogram taken over the region of the voxel; the mixture of materials that those values measure is identified within the voxel using a probabilistic Bayesian approach that matches the histogram by finding the mixture of materials within each voxel most likely to have created the histogram. The size of regions that the authors classify is chosen to match the sparing of the samples because the spacing is intrinsically related to the minimum feature size that the reconstructed continuous function can represent
Increasing Incidence Within PubMed of the Use of the Misspelling Pruritis (Sic) Instead of Pruritus for Itch
Writers generally benefit from word processing technology, and the use of other forms of formal writing such as typewriters is archaic. The first stand-alone spell checker programs originated in the early 1980s, and by 1995 they were embedded within word processing programs such as Word 95 (1). With the ubiquity of such software, spelling errors in the medical literature should be extinct. Yet, as a reader of the medical literature with an interest in itch, this author is impressed with the numbers of misspellings of the word Β«pruritus.Β» The word pruritus is derived from the Latin pruritus, past participle of prurire βto itchβ (2) To assess the frequency and characteristics of the misspellings of this word, a PubMed search was undertaken
Pure phase-encoded MRI and classification of solids
Here, the authors combine a pure phase-encoded magnetic resonance imaging (MRI) method with a new tissue-classification technique to make geometric models of a human tooth. They demonstrate the feasibility of three-dimensional imaging of solids using a conventional 11.7-T NMR spectrometer. In solid-state imaging, confounding line-broadening effects are typically eliminated using coherent averaging methods. Instead, the authors circumvent them by detecting the proton signal at a fixed phase-encode time following the radio-frequency excitation. By a judicious choice of the phase-encode time in the MRI protocol, the authors differentiate enamel and dentine sufficiently to successfully apply a new classification algorithm. This tissue-classification algorithm identifies the distribution of different material types, such as enamel and dentine, in volumetric data. In this algorithm, the authors treat a voxel as a volume, not as a single point, and assume that each voxel may contain more than one material. They use the distribution of MR image intensities within each voxel-sized volume to estimate the relative proportion of each material using a probabilistic approach. This combined approach, involving MRI and data classification, is directly applicable to bone imaging and hard-tissue contrast-based modeling of biological solids
Constrained Optimization Applied to the Parameter Setting Problem for Analog Circuits
We use constrained optimization to select operating parameters for two circuits: a simple 3-transistor square root circuit, and an analog VLSI artificial cochlea. This automated method uses computer controlled measurement
and test equipment to choose chip parameters which minimize
the difference between the actual circuit's behavior and a specified goal behavior. Choosing the proper circuit parameters is important to compensate for manufacturing deviations or adjust circuit performance within
a certain range. As biologically-motivated analog VLSI circuits become increasingly complex, implying more parameters, setting these parameters by hand will become more cumbersome. Thus an automated parameter
setting method can be of great value [Fleischer 90]. Automated parameter setting is an integral part of a goal-based engineering design methodology in which circuits are constructed with parameters enabling a wide range
of behaviors, and are then "tuned" to the desired behaviors automatically
An Anti-Human ICAM-1 Antibody Inhibits Rhinovirus-Induced Exacerbations of Lung Inflammation
Human rhinoviruses (HRV) cause the majority of common colds and acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Effective therapies are urgently needed, but no licensed treatments or vaccines currently exist. Of the 100 identified serotypes, βΌ90% bind domain 1 of human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor, making this an attractive target for development of therapies; however, ICAM-1 domain 1 is also required for host defence and regulation of cell trafficking, principally via its major ligand LFA-1. Using a mouse anti-human ICAM-1 antibody (14C11) that specifically binds domain 1 of human ICAM-1, we show that 14C11 administered topically or systemically prevented entry of two major groups of rhinoviruses, HRV16 and HRV14, and reduced cellular inflammation, pro-inflammatory cytokine induction and virus load in vivo. 14C11 also reduced cellular inflammation and Th2 cytokine/chemokine production in a model of major group HRV-induced asthma exacerbation. Interestingly, 14C11 did not prevent cell adhesion via human ICAM-1/LFA-1 interactions in vitro, suggesting the epitope targeted by 14C11 was specific for viral entry. Thus a human ICAM-1 domain-1-specific antibody can prevent major group HRV entry and induction of airway inflammation in vivo
Effects of systematic asymmetric discounting on physician-patient interactions: a theoretical framework to explain poor compliance with lifestyle counseling
BACKGROUND: This study advances the use of a utility model to model physician-patient interactions from the perspectives of physicians and patients. PRESENTATION OF THE HYPOTHESIS: In cases involving acute care, patient counseling involves a relatively straightforward transfer of information from the physician to a patient. The patient has less information than the physician on the impact the condition and its treatment have on utility. In decisions involving lifestyle changes, the patient may have more information than the physician on his/her utility of consumption; moreover, differences in discounting future health may contribute significantly to differences between patients' preferences and physicians' recommendations. TESTING THE HYPOTHESIS: The expectation of differences in internal discount rate between patients and their physicians is discussed. IMPLICATIONS OF THE HYPOTHESIS: This utility model provides a conceptual basis for the finding that educational approaches alone may not effect changes in patient behavior and suggests other economic variables that could be targeted in the attempt to produce healthier behavior
Spatial capital as a tool for planning practice
This purpose of this article is to look at the potential benefit to planning practice of engaging with spatial capital β a concept derived from the social theory of Bourdieu. Doubt is expressed about the theoretical basis for spatial capital; nevertheless, it is argued that it may have merit as a trope for planning practitioners. Spatial capital has a strong empirical basis, making it accessible to planning practice and offering a new means for interpreting and communicating the combined effects of a range of individual urban events such as the gating of communities, differing mobilities and schooling tactics. By focussing on the interplay of social positioning within place, it emphasises the joined-up nature of disadvantage and highlights the limits of environmental determinism. However, its use is not without possible drawbacks. Here, the experience of social capital is informative, as this has been appropriated by groups with quite different readings of its implications for policy
A Passerine Bird's Evolution Corroborates the Geologic History of the Island of New Guinea
New Guinea is a biologically diverse island, with a unique geologic history and topography that has likely played a role in the evolution of species. Few island-wide studies, however, have examined the phylogeographic history of lowland species. The objective of this study was to examine patterns of phylogeographic variation of a common and widespread New Guinean bird species (Colluricincla megarhyncha). Specifically, we test the mechanisms hypothesized to cause geographic and genetic variation (e.g., vicariance, isolation by distance and founder-effect with dispersal). To accomplish this, we surveyed three regions of the mitochondrial genome and a nuclear intron and assessed differences among 23 of the 30 described subspecies from throughout their range. We found support for eight highly divergent lineages within C. megarhyncha. Genetic lineages were found within continuous lowland habitat or on smaller islands, but all individuals within clades were not necessarily structured by predicted biogeographic barriers. There was some evidence of isolation by distance and potential founder-effects. Mitochondrial DNA sequence divergence among lineages was at a level often observed among different species or even genera of birds (5β11%), suggesting lineages within regions have been isolated for long periods of time. When topographical barriers were associated with divergence patterns, the estimated divergence date for the clade coincided with the estimated time of barrier formation. We also found that dispersal distance and range size are positively correlated across lineages. Evidence from this research suggests that different phylogeographic mechanisms concurrently structure lineages of C. megarhyncha and are not mutually exclusive. These lineages are a result of evolutionary forces acting at different temporal and spatial scales concordant with New Guinea's geological history
The question concerning human rights and human rightlessness: disposability and struggle in the Bhopal gas disaster
In the midst of concerns about diminishing political support for human rights, individuals and groups across the globe continue to invoke them in their diverse struggles against oppression and injustice. Yet both those concerned with the future of human rights and those who champion rights activism as essential to resistance, assume that human rights β as law, discourse and practices of rights claiming β can ameliorate rightlessness. In questioning this assumption, this article seeks also to reconceptualise rightlessness by engaging with contemporary discussions of disposability and social abandonment in an attempt to be attentive to forms of rightlessness co-emergent with the operations of global capital. Developing a heuristic analytics of rightlessness, it evaluates the relatively recent attempts to mobilise human rights as a frame for analysis and action in the campaigns for justice following the 3 December 1984 gas leak from Union Carbide Corporationβs (UCC) pesticide manufacturing plant in Bhopal, India. Informed by the complex effects of human rights in the amelioration of rightlessness, the article calls for reconstituting human rights as an optics of rightlessness
- β¦