137 research outputs found
Efficient algorithms for generalized Stable Marriage and Roommates problems
We consider a generalization of the Stable Roommates problem (SR), in which preference lists may be partially ordered and forbidden pairs may be present, denoted by SRPF. This includes, as a special case, a corresponding generalization of the classical Stable Marriage problem (SM), denoted by SMPF. By extending previous work of Feder, we give a two-step reduction from SRPF to 2-SAT. This has many consequences, including fast algorithms for a range of problems associated with finding "optimal" stable matchings and listing all solutions, given variants of SR and SM. For example, given an SMPF instance I, we show that there exists an O(m) "succinct" certificate for the unsolvability of I, an O(m) algorithm for finding all the super-stable pairs in I, an O(m+kn) algorithm for listing all the super-stable matchings in I, an O(m<sup>1.5</sup>) algorithm for finding an egalitarian super-stable matching in I, and an O(m) algorithm for finding a minimum regret super-stable matching in I, where n is the number of men, m is the total length of the preference lists, and k is the number of super-stable matchings in I. Analogous results apply in the case of SRPF
Matching couples with Scarf’s algorithm
Scarf's algorithm [20] provides fractional core elements for NTU-games. Bir�o and
Fleiner [3] showed that Scarf's algorithm can be extended for capacitated NTU-games. In
this setting agents can be involved in more than one coalition at a time, cooperations may be
performed with di�erent intensities up to some limits, and the contribution of the agents can
also di�er in a coalition. The fractional stable solutions for the above model, produced by the
extended Scarf algorithm, are called stable allocations. In this paper we apply this solution
concept for the Hospitals / Residents problem with Couples (HRC). This is one of the most
important general stable matching problems due to its relevant applications, also well-known
to be NP-hard. We show that if a stable allocation yielded by the Scarf algorithm turns out
to be integral then it provides a stable matching for an instance of HRC, so this method
can be used as a heuristic. In an experimental study, we compare this method with other
heuristics constructed for HRC that are applied in practice in the American and Scottish
resident allocation programs, respectively. Our main �nding is that the Scarf algorithm
outperforms all the other known heuristics when the proportion of couples is high
New and simple algorithms for stable flow problems
Stable flows generalize the well-known concept of stable matchings to markets
in which transactions may involve several agents, forwarding flow from one to
another. An instance of the problem consists of a capacitated directed network,
in which vertices express their preferences over their incident edges. A
network flow is stable if there is no group of vertices that all could benefit
from rerouting the flow along a walk.
Fleiner established that a stable flow always exists by reducing it to the
stable allocation problem. We present an augmenting-path algorithm for
computing a stable flow, the first algorithm that achieves polynomial running
time for this problem without using stable allocation as a black-box
subroutine. We further consider the problem of finding a stable flow such that
the flow value on every edge is within a given interval. For this problem, we
present an elegant graph transformation and based on this, we devise a simple
and fast algorithm, which also can be used to find a solution to the stable
marriage problem with forced and forbidden edges.
Finally, we study the stable multicommodity flow model introduced by
Kir\'{a}ly and Pap. The original model is highly involved and allows for
commodity-dependent preference lists at the vertices and commodity-specific
edge capacities. We present several graph-based reductions that show
equivalence to a significantly simpler model. We further show that it is
NP-complete to decide whether an integral solution exists
Integer programming methods for special college admissions problems
We develop Integer Programming (IP) solutions for some special college
admission problems arising from the Hungarian higher education admission
scheme. We focus on four special features, namely the solution concept of
stable score-limits, the presence of lower and common quotas, and paired
applications. We note that each of the latter three special feature makes the
college admissions problem NP-hard to solve. Currently, a heuristic based on
the Gale-Shapley algorithm is being used in the application. The IP methods
that we propose are not only interesting theoretically, but may also serve as
an alternative solution concept for this practical application, and also for
other ones
Cycle bases for lattices of binary matroids with no Fano dual minor and their one-element extensions
Stable marriage and roommates problems with restricted edges: complexity and approximability
In the Stable Marriage and Roommates problems, a set of agents is given, each of them having a strictly ordered preference list over some or all of the other agents. A matching is a set of disjoint pairs of mutually acceptable agents. If any two agents mutually prefer each other to their partner, then they block the matching, otherwise, the matching is said to be stable. We investigate the complexity of finding a solution satisfying additional constraints on restricted pairs of agents. Restricted pairs can be either forced or forbidden. A stable solution must contain all of the forced pairs, while it must contain none of the forbidden pairs.
Dias et al. (2003) gave a polynomial-time algorithm to decide whether such a solution exists in the presence of restricted edges. If the answer is no, one might look for a solution close to optimal. Since optimality in this context means that the matching is stable and satisfies all constraints on restricted pairs, there are two ways of relaxing the constraints by permitting a solution to: (1) be blocked by as few as possible pairs, or (2) violate as few as possible constraints n restricted pairs.
Our main theorems prove that for the (bipartite) Stable Marriage problem, case (1) leads to View the MathML source-hardness and inapproximability results, whilst case (2) can be solved in polynomial time. For non-bipartite Stable Roommates instances, case (2) yields an View the MathML source-hard but (under some cardinality assumptions) 2-approximable problem. In the case of View the MathML source-hard problems, we also discuss polynomially solvable special cases, arising from restrictions on the lengths of the preference lists, or upper bounds on the numbers of restricted pairs
- …