6,642 research outputs found

    Channeling 5-min photospheric oscillations into the solar outer atmosphere through small-scale vertical magnetic flux tubes

    Full text link
    We report two-dimensional MHD simulations which demonstrate that photospheric 5-min oscillations can leak into the chromosphere inside small-scale vertical magnetic flux tubes. The results of our numerical experiments are compatible with those inferred from simultaneous spectropolarimetric observations of the photosphere and chromosphere obtained with the Tenerife Infrared Polarimeter (TIP) at 10830 A. We conclude that the efficiency of energy exchange by radiation in the solar photosphere can lead to a significant reduction of the cut-off frequency and may allow for the propagation of the 5 minutes waves vertically into the chromosphere.Comment: accepted by ApJ

    Nuclei of Double-Charm Hyperons

    Full text link
    The ground states of double-charm hyperons form a spin 1/2 isospin 1/2 multiplet analogous to that of nucleons. Their main strong interaction may be inferred directly from the corresponding nucleon-nucleon interaction by multiplication of the interaction components by the appropriate fractional difference between interaction strengths for pairs of light flavor quarks and pairs of triplets, e.g. nucleons, of light flavor quarks. By construction of the interaction between the recently discovered double-charm hyperons by this method from several realistic nucleon-nucleon interaction models it is shown that double-charm hyperons are likely to form bound (or possibly meta-stable) states akin to the deuteron in the spin triplet state. Double beauty baryons would form corresponding deeply bound states. Nucleons and double charm (beauty) hyperons will also form bound states. The existence of hypernuclei with double-charm and double-beauty hyperons, which are stable against the strong decay, is very likely.Comment: Revised version. Conclusions unchange

    Is the partial pressure of carbon dioxide in the blood related to the development of retinopathy of prematurity?

    Get PDF
    AIMS—To determine the role of carbon dioxide in the development of retinopathy of prematurity (ROP).
METHODS—This was a retrospective cohort study of 25 consecutive infants admitted to the neonatal unit with continuously recorded physiological data. The daily mean and standard deviation (SD) of transcutaneous carbon dioxide partial pressure (tcPCO(2)) was compared between infants who had stage 1 or 2 ROP and stage 3 ROP. The time spent hypocarbic (<3 kPa) and/or hypercarbic (>10 kPa and >12 kPa) was also compared between these groups. Intermittent arterial carbon dioxide tension was also measured and compared with the simultaneous tcPCO(2) data.
RESULTS—There were no significant differences in carbon dioxide variability or time spent hypocarbic and/or hypercarbic between the ROP groups on any day. 86% of transcutaneous values were within 1.5 kPa of the simultaneous arterial value.
CONCLUSION—TcPCO(2) measurement can be a very useful management technique. However, in this cohort neither variable blood carbon dioxide tension nor duration of hypercarbia or hypocarbia in the first 2 weeks of life was associated with the development or severity of ROP.


    Heavy Quark Fragmentation to Baryons Containing Two Heavy Quarks

    Full text link
    We discuss the fragmentation of a heavy quark to a baryon containing two heavy quarks of mass mQΛQCDm_Q\gg\Lambda_{\rm QCD}. In this limit the heavy quarks first combine perturbatively into a compact diquark with a radius small compared to 1/ΛQCD1/\Lambda_{\rm QCD}, which interacts with the light hadronic degrees of freedom exactly as does a heavy antiquark. The subsequent evolution of this QQQQ diquark to a QQqQQq baryon is identical to the fragmentation of a heavy antiquark to a meson. We apply this analysis to the production of baryons of the form ccqccq, bbqbbq, and bcqbcq.Comment: 9 pages, 1 figure included, uses harvmac.tex and epsf.tex, UCSD/PTH 93-11, CALT-68-1868, SLAC-PUB-622

    Powder metallurgy bearings for advanced rocket engines

    Get PDF
    Traditional ingot metallurgy was pushed to the limit for many demanding applications including antifriction bearings. New systems require corrosion resistance, better fatigue resistance, and higher toughness. With conventional processing, increasing the alloying level to achieve corrosion resistance results in a decrease in other properties such as toughness. Advanced powder metallurgy affords a viable solution to this problem. During powder manufacture, the individual particle solidifies very rapidly; as a consequence, the primary carbides are very small and uniformly distributed. When properly consolidated, this uniform structure is preserved while generating a fully dense product. Element tests including rolling contact fatigue, hot hardness, wear, fracture toughness, and corrosion resistance are underway on eleven candidate P/M bearing alloys and results are compared with those for wrought 440C steel, the current SSME bearing material. Several materials which offer the promise of a significant improvement in performance were identified
    corecore