226 research outputs found
The scope for pneumococcal vaccines that do not prevent transmission.
The pneumococcal vaccine pipeline holds candidates developed with the aim to prevent the majority if not all pneumococcal disease. Herd protection is a critical component of the overall impact of current pneumococcal conjugate vaccines (PCVs) and is a prerequisite for disease elimination through an infant vaccination programme. We assessed the scope of a hypothetical pneumococcal vaccine candidate (HPVC) with high clinical efficacy against all pneumococci but that fails to induce such indirect protection. We found that, despite a lack of impact on unvaccinated individuals, HPVC use in infancy may offer similar or superior impact among young children if compared to current PCVs. Hence, it could provide a more affordable alternative to PCVs in particular in settings where most pneumococcal disease is concentrated in children
Assessing optimal target populations for influenza vaccination programmes: an evidence synthesis and modelling study.
BACKGROUND: Influenza vaccine policies that maximise health benefit through efficient use of limited resources are needed. Generally, influenza vaccination programmes have targeted individuals 65 y and over and those at risk, according to World Health Organization recommendations. We developed methods to synthesise the multiplicity of surveillance datasets in order to evaluate how changing target populations in the seasonal vaccination programme would affect infection rate and mortality. METHODS AND FINDINGS: Using a contemporary evidence-synthesis approach, we use virological, clinical, epidemiological, and behavioural data to develop an age- and risk-stratified transmission model that reproduces the strain-specific behaviour of influenza over 14 seasons in England and Wales, having accounted for the vaccination uptake over this period. We estimate the reduction in infections and deaths achieved by the historical programme compared with no vaccination, and the reduction had different policies been in place over the period. We find that the current programme has averted 0.39 (95% credible interval 0.34-0.45) infections per dose of vaccine and 1.74 (1.16-3.02) deaths per 1,000 doses. Targeting transmitters by extending the current programme to 5-16-y-old children would increase the efficiency of the total programme, resulting in an overall reduction of 0.70 (0.52-0.81) infections per dose and 1.95 (1.28-3.39) deaths per 1,000 doses. In comparison, choosing the next group most at risk (50-64-y-olds) would prevent only 0.43 (0.35-0.52) infections per dose and 1.77 (1.15-3.14) deaths per 1,000 doses. CONCLUSIONS: This study proposes a framework to integrate influenza surveillance data into transmission models. Application to data from England and Wales confirms the role of children as key infection spreaders. The most efficient use of vaccine to reduce overall influenza morbidity and mortality is thus to target children in addition to older adults. Please see later in the article for the Editors' Summary
Estimating the contribution of different age strata to vaccine serotype pneumococcal transmission in the pre vaccine era: a modelling study.
BACKGROUND: Herd protection through interruption of transmission has contributed greatly to the impact of pneumococcal conjugate vaccines (PCVs) and may enable the use of cost-saving reduced dose schedules. To aid PCV age targeting to achieve herd protection, we estimated which population age groups contribute most to vaccine serotype (VT) pneumococcal transmission. METHODS: We used transmission dynamic models to mirror pre-PCV epidemiology in England and Wales, Finland, Kilifi in Kenya and Nha Trang in Vietnam where data on carriage prevalence in infants, pre-school and school-aged children and adults as well as social contact patterns was available. We used Markov Chain Monte Carlo methods to fit the models and then extracted the per capita and population-based contribution of different age groups to VT transmission. RESULTS: We estimated that in all settings, < 1-year-old infants cause very frequent secondary vaccine type pneumococcal infections per capita. However, 1-5-year-old children have the much higher contribution to the force of infection at 51% (28, 73), 40% (27, 59), 37% (28, 48) and 67% (41, 86) of the total infection pressure in E&W, Finland, Kilifi and Nha Trang, respectively. Unlike the other settings, school-aged children in Kilifi were the dominant source for VT infections with 42% (29, 54) of all infections caused. Similarly, we estimated that the main source of VT infections in infants are pre-school children and that in Kilifi 39% (28, 51) of VT infant infections stem from school-aged children whereas this was below 15% in the other settings. CONCLUSION: Vaccine protection of pre-school children is key for PCV herd immunity. However, in high transmission settings, school-aged children may substantially contribute to transmission and likely have waned much of their PCV protection under currently recommended schedules
Extending the elderly- and risk-group programme of vaccination against seasonal influenza in England and Wales: a cost-effectiveness study.
BACKGROUND: The present study aims to evaluate the cost-effectiveness of extending the pre-2013 influenza immunisation programme for high-risk and elderly individuals to those at low risk of developing complications following infection with seasonal influenza. METHODS: We performed an economic evaluation comparing different extensions of the pre-2013 influenza programme to seven possible age groups of low-risk individuals (aged 2-4 years, 50-64 years, 5-16 years, 2-4 and 50-64 years, 2-16 years, 2-16 and 50-64 years, and 2-64 years). These extensions are evaluated incrementally on four base scenarios (no vaccination, risk group only with coverage as observed between 1995 and 2009, risk group and 65+, and risk group with 75% coverage and 65+). Impact of vaccination is assessed using a transmission model built and parameterised from a previously published study. The study population is all individuals of all ages in England and Wales representing an average total of 52.6 million people over 14 influenza seasons (1995-2009). RESULTS: The influenza programme (risk group and elderly) prior to 2013 is likely to be cost effective (incremental cost effectiveness ratio: 7,475 £/QALY, net benefit: 253 M£ [15-829]). Extension to any one of the low-risk target groups defined earlier is likely to be cost-effective. However, strategies that do not include vaccination of school-aged children are less likely to be cost-effective. The most efficient strategy is extension to the 5-16 year age group while universal vaccination (extension to all low-risk individuals over 2 years) will achieve the highest net benefit. While extension to the 2-16 year age group is likely to be very cost effective, the cost-effectiveness of extensions beyond 2-16 years is very uncertain. Extension to the 5-16 year age group would likely remain cost-effective even without herd immunity effects to other age groups. As our study includes a strong historical component, our results depend on the efficacy of the influenza vaccine remaining at levels similar to the ones achieved in the past over a long-period of time (assumed to vary between 28% and 70% depending of the circulating strains and age groups). CONCLUSIONS: Making use of surveillance data from over a decade in conjunction with a dynamic model, we find that vaccination of children in the United Kingdom is likely to be highly cost-effective, not only for their own benefit but also to reduce the disease burden in the rest of the community
The potential for vaccination-induced herd immunity against the SARS-CoV-2 B.1.1.7 variant
Initial reports of vaccine effectiveness against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease (COVID-19), have suggested a substantial reduction of the risk of infection [1]. Nevertheless, with the emergence of more transmissible variants such as B.1.1.7 [2], how large-scale immunisation programmes against SARS-CoV-2 will perform is currently unclear. This study assesses the potential of COVID-19 vaccination to generate herd immunity and takes into account vaccine effectiveness, naturally-acquired immunity and achievable vaccination coverage (depending on the population age structure), as well as two transmissibility scenarios ((i) with pre-B.1.1.7, and (ii) with exclusively B.1.1.7 variants)
Modeling the effect of vaccination on selection for antibiotic resistance in Streptococcus pneumoniae
Vaccines against bacterial pathogens can protect recipients from becoming infected with potentially antibiotic-resistant pathogens. However, by altering the selective balance between antibiotic-sensitive and antibiotic-resistant bacterial strains, vaccines may also suppress-or spread-antibiotic resistance among unvaccinated individuals. Predicting the outcome of vaccination requires knowing what drives selection for drug-resistant bacterial pathogens and what maintains the circulation of both antibiotic-sensitive and antibiotic-resistant strains of bacteria. To address this question, we used mathematical modeling and data from 2007 on penicillin consumption and penicillin nonsusceptibility in Streptococcus pneumoniae (pneumococcus) invasive isolates from 27 European countries. We show that the frequency of penicillin resistance in S. pneumoniae can be explained by between-host diversity in antibiotic use, heritable diversity in pneumococcal carriage duration, or frequency-dependent selection brought about by within-host competition between antibiotic-resistant and antibiotic-sensitive S. pneumoniae strains. We used our calibrated models to predict the impact of non-serotype-specific pneumococcal vaccination upon the prevalence of S. pneumoniae carriage, incidence of disease, and frequency of S. pneumoniae antibiotic resistance. We found that the relative strength and directionality of competition between drug-resistant and drug-sensitive pneumococcal strains was the most important determinant of whether vaccination would promote, inhibit, or have little effect upon the evolution of antibiotic resistance. Last, we show that country-specific differences in pathogen transmission substantially altered the predicted impact of vaccination, highlighting that policies for managing antibiotic resistance with vaccines must be tailored to a specific pathogen and setting
- …