838 research outputs found

    Nifedipine in Congenital Hyperinsulinism - A Case Report.

    Get PDF
    PublishedJournal ArticleThis is the final version of the article. Available from Galenos Yayınevi via the DOI in this record.Congenital hyperinsulinism (CHI) is the commonest cause of persistent hypoglycemia in neonates. Diazoxide is the first-line drug in its treatment, but the more severe cases are usually diazoxide-resistant. Recessive ABCC8 and KCNJ11 mutations are responsible for most (82%) of the severe diazoxide-unresponsive CHI. Oral nifedipine has been effective in isolated cases of CHI. Successful treatment of diazoxide-unresponsive CHI with a combination of octreotide and nifedipine has been reported in a single isolated case so far. We report here a case of diazoxide-resistant CHI due to homozygous ABCC8 nonsense mutation. In this case, hypoglycaemia uncontrolled by pancreatectomy and octreotide alone showed a good response to a combination of nifedipine and octreotide. Octreotide was tapered off by one year age and thereafter the child is euglycaemic on oral nifedipine alone. Continuous glucose monitoring sensor was used as an aid to monitor glycaemic control and was found to be a safe and reliable option reducing the number of needle-pricks in small children

    A combination of nifedipine and octreotide treatment in an hyperinsulinemic hypoglycemic infant.

    Get PDF
    PublishedResearch Support, Non-U.S. Gov'tThis is the final version of the article. Available from Galenos Publishing via the DOI in this record.Hyperinsulinemic hypoglycemia (HH) is the commonest cause of persistent hypoglycemia in the neonatal and infancy periods. Mutations in the ABCC8 and KCNJ11 genes, which encode subunits of the ATP-sensitive potassium channel in the pancreatic beta cell, are identified in approximately 50% of these patients. The first-line drug in the treatment of HH is diazoxide. Octreotide and glucagon can be used in patients who show no response to diazoxide. Nifedipine, a calcium-channel blocker, has been shown to be an effective treatment in a small number of patients with diazoxide-unresponsive HH. We report a HH patient with a homozygous ABCC8 mutation (p.W1339X) who underwent a near-total pancreatectomy at 2 months of age due to a lack of response to diazoxide and octreotide treatment. Severe hypoglycemic attacks continued following surgery, while the patient was being treated with octreotide. These attacks resolved when nifedipine was introduced. Whilst our patient responded well to nifedipine, the dosage could not be increased to 0.75 mg/kg/day due to development of hypotension, a reported side effect of this drug. Currently, our patient, now aged 4 years, is receiving a combination of nifedipine and octreotide treatment. He is under good control and shows no side effects. In conclusion, nifedipine treatment can be started in patients with HH who show a poor response to diazoxide and octreotide treatment.Sian Ellard is employed by the Exeter Clinical Research Facility and is a Wellcome Trust Senior Investigator. The genetic testing was funded by a research grant from the Medical Research Council

    Future Roadmaps for Precision Medicine Applied to Diabetes: Rising to the Challenge of Heterogeneity.

    Get PDF
    Precision medicine, the concept that specific treatments can be targeted to groups of individuals with specific genetic, cellular, or molecular features, is a key aspect of modern healthcare, and its use is rapidly expanding. In diabetes, the application of precision medicine has been demonstrated in monogenic disease, where sulphonylureas are used to treat patients with neonatal diabetes due to mutations in ATP-dependent potassium (KATP) channel genes. However, diabetes is highly heterogeneous, both between and within polygenic and monogenic subtypes. Making the correct diagnosis and using the correct treatment from diagnosis can be challenging for clinicians, but it is crucial to prevent long-term morbidity and mortality. To facilitate precision medicine in diabetes, research is needed to develop a better understanding of disease heterogeneity and its impact on potential treatments for specific subtypes. Animal models have been used in diabetes research, but they are not translatable to humans in the majority of cases. Advances in molecular genetics and functional laboratory techniques and availability and sharing of large population data provide exciting opportunities for human studies. This review will map the key elements of future diabetes research in humans and its potential for clinical translation to promote precision medicine in all diabetes subtypes.This article is freely available online via Open Access

    Pancreatic endocrine and exocrine function in children following near-total pancreatectomy for diffuse congenital hyperinsulinism.

    Get PDF
    Published onlineJournal ArticleCONTEXT: Congenital hyperinsulinism (CHI), the commonest cause of persistent hypoglycaemia, has two main histological subtypes: diffuse and focal. Diffuse CHI, if medically unresponsive, is managed with near-total pancreatectomy. Post-pancreatectomy, in addition to persistent hypoglycaemia, there is a very high risk of diabetes mellitus and pancreatic exocrine insufficiency. SETTING: International referral centre for the management of CHI. PATIENTS: Medically unresponsive diffuse CHI patients managed with near-total pancreatectomy between 1994 and 2012. INTERVENTION: Near-total pancreatectomy. MAIN OUTCOME MEASURES: Persistent hypoglycaemia post near-total pancreatectomy, insulin-dependent diabetes mellitus, clinical and biochemical (faecal elastase 1) pancreatic exocrine insufficiency. RESULTS: Of more than 300 patients with CHI managed during this time period, 45 children had medically unresponsive diffuse disease and were managed with near-total pancreatectomy. After near-total pancreatectomy, 60% of children had persistent hypoglycaemia requiring medical interventions. The incidence of insulin dependent diabetes mellitus was 96% at 11 years after surgery. Thirty-two patients (72%) had biochemical evidence of severe pancreatic exocrine insufficiency (Faecal elastase 1<100 µg/g). Clinical exocrine insufficiency was observed in 22 (49%) patients. No statistically significant difference in weight and height standard deviation score (SDS) was found between untreated subclinical pancreatic exocrine insufficiency patients and treated clinical pancreatic exocrine insufficiency patients. CONCLUSIONS: The outcome of diffuse CHI patients after near-total pancreatectomy is very unsatisfactory. The incidence of persistent hypoglycaemia and insulin-dependent diabetes mellitus is very high. The presence of clinical rather than biochemical pancreatic exocrine insufficiency should inform decisions about pancreatic enzyme supplementation

    Dominantly acting ABCC8 mutations in patients with medically unresponsive hyperinsulinaemic hypoglycaemia

    Get PDF
    Flanagan SE, Kapoor RR, Banerjee I, Hall C, Smith VV, Hussain K, Ellard S. Dominantly acting ABCC8 mutations in patients with medically unresponsive hyperinsulinaemic hypoglycaemia

    Two decades since the fetal insulin hypothesis: what have we learned from genetics?

    Get PDF
    This is the final version. Available from Springer via the DOI in this record. Data availability: This review did not generate any new data.In 1998 the fetal insulin hypothesis proposed that lower birthweight and adult-onset type 2 diabetes are two phenotypes of the same genotype. Since then, advances in research investigating the role of genetics affecting insulin secretion and action have furthered knowledge of fetal insulin-mediated growth and the biology of type 2 diabetes. In this review, we discuss the historical research context from which the fetal insulin hypothesis originated and consider the position of the hypothesis in light of recent evidence. In summary, there is now ample evidence to support the idea that variants of certain genes which result in impaired pancreatic beta cell function and reduced insulin secretion contribute to both lower birthweight and higher type 2 diabetes risk in later life when inherited by the fetus. There is also evidence to support genetic links between type 2 diabetes secondary to reduced insulin action and lower birthweight but this applies only to loci implicated in body fat distribution and not those influencing insulin resistance via obesity or lipid metabolism by the liver. Finally, we also consider how advances in genetics are being used to explore alternative hypotheses, namely the role of the maternal intrauterine environment, in the relationship between lower birthweight and adult cardiometabolic disease.Wellcome TrustNational Institute of Health Research (NIHR)Royal Societ

    Genetic Mechanisms Highlight Shared Pathways for the Pathogenesis of Polygenic Type 1 Diabetes and Monogenic Autoimmune Diabetes

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordPURPOSE OF REVIEW: To highlight pathways important for the development of autoimmune diabetes by investigating shared mechanisms of disease in polygenic and monogenic diabetes. RECENT FINDINGS: Genome-wide association studies have identified 57 genetic risk loci for type 1 diabetes. Progress has been made in unravelling the mechanistic effects of some of these variants, providing key insights into the pathogenesis of type 1 diabetes. Seven monogenic disorders have also been described where diabetes features as part of an autoimmune syndrome. Studying these genes in relation to polygenic risk loci provides a unique opportunity to dissect pathways important for the development of immune-mediated diabetes. Monogenic autoimmune diabetes can result from the dysregulation of multiple pathways suggesting that small effects on many immune processes are required to drive the autoimmune attack on pancreatic beta cells in polygenic type 1 diabetes. A breakdown in central and peripheral immune tolerance is a common theme in the genetic mechanisms of both monogenic and polygenic disease which highlights the importance of these checkpoints in the development and treatment of islet autoimmunity.National Institutes of Health (NIH)Wellcome TrustRoyal Societ

    A CACNA1D mutation in a patient with persistent hyperinsulinaemic hypoglycaemia, heart defects, and severe hypotonia.

    Get PDF
    Congenital hyperinsulinaemic hypoglycaemia (HH) can occur in isolation or it may present as part of a wider syndrome. For approximately 40%-50% of individuals with this condition, sequence analysis of the known HH genes identifies a causative mutation. Identifying the underlying genetic aetiology in the remaining cases is important as a genetic diagnosis will inform on recurrence risk, may guide medical management and will provide valuable insights into β-cell physiology. We sequenced the exome of a child with persistent diazoxide-responsive HH, mild aortic insufficiency, severe hypotonia, and developmental delay as well as the unaffected parents. This analysis identified a de novo mutation, p.G403D, in the proband's CACNA1D gene. CACNA1D encodes the main L-type voltage-gated calcium channel in the pancreatic β-cell, a key component of the insulin secretion pathway. The p.G403D mutation had been reported previously as an activating mutation in an individual with primary hyper-aldosteronism, neuromuscular abnormalities, and transient hypoglycaemia. Sequence analysis of the CACNA1D gene in 60 further cases with HH did not identify a pathogenic mutation. Identification of an activating CACNA1D mutation in a second patient with congenital HH confirms the aetiological role of CACNA1D mutations in this disorder. A genetic diagnosis is important as treatment with a calcium channel blocker may be an option for the medical management of this patient

    Hyperinsulinaemic hypoglycaemia and diabetes mellitus due to dominant ABCC8/KCNJ11 mutations

    Get PDF
    Dominantly acting loss-of-function mutations in the ABCC8/KCNJ11 genes can cause mild medically responsive hyperinsulinaemic hypoglycaemia (HH). As controversy exists over whether these mutations predispose to diabetes in adulthood we investigated the prevalence of diabetes in families with dominantly inherited ATP-sensitive potassium (K-ATP) channel mutations causing HH in the proband.We studied the phenotype of 30 mutation carriers (14 children and 16 adults) from nine families with dominant ABCC8/KCNJ11 mutations. Functional consequences of six novel missense mutations were examined by reconstituting the K-ATP channel in human embryonic kidney 293 (HEK293) cells and evaluating the effect of drugs and metabolic poisoning on the channels using the Rb-86 flux assay.The mutant channels all showed a lack of Rb-86 efflux on exposure to the channel agonist diazoxide or metabolic inhibition. In the families, dominant ABCC8/KCNJ11 mutations were associated with increased birthweight (median + 1.56 SD score [SDS]). Fourteen children had HH and five adults were reported with HH or hypoglycaemic episodes (63%). Progression from hypoglycaemia to diabetes mellitus occurred in two individuals. Eight adults had a history of gestational diabetes in multiple pregnancies or were diabetic (diagnosed at a median age of 31 years). Within these families, none of the 19 adults who were not carriers of the ABCC8/KCNJ11 mutation was known to be diabetic.The phenotype associated with dominant ABCC8/KCNJ11 mutations ranges from asymptomatic macrosomia to persistent HH in childhood. In adults, it may also be an important cause of dominantly inherited early-onset diabetes mellitus

    REVEL Is Better at Predicting Pathogenicity of Loss-of-Function than Gain-of-Function Variants

    Get PDF
    This is the final version. Available on open access from Hindawi via the DOI in this recordData Availability: The list of variants used in this study are included in Supplementary Table 1.In silico predictive tools can help determine the pathogenicity of variants. The 2015 American College of Medical Genetics and Genomics (ACMG) guidelines recommended that scores from these tools can be used as supporting evidence of pathogenicity. A subsequent publication by the ClinGen Sequence Variant Interpretation Working Group suggested that high scores from some tools were sufficiently predictive to be used as moderate or strong evidence of pathogenicity. REVEL is a widely used metapredictor that uses the scores of 13 individual in silico tools to calculate the pathogenicity of missense variants. Its ability to predict missense pathogenicity has been assessed extensively; however, no study has previously tested whether its performance is affected by whether the missense variant acts via a loss-of-function (LoF) or gain-of-function (GoF) mechanism. We used a highly curated dataset of 66 confirmed LoF and 65 confirmed GoF variants to evaluate whether this affected the performance of REVEL. 98% of LoF and 100% of GoF variants met the author-recommended REVEL threshold of 0.5 for pathogenicity, while 89% of LoF and 88% of GoF variants exceeded the 0.75 threshold. However, while 55% of LoF variants met the threshold recommended for a REVEL score to count as strong evidence of pathogenicity from the ACMG guidelines (0.932), only 35% of GoF variants met this threshold (). GoF variants are therefore less likely to receive the highest REVEL scores which would enable the REVEL score to be used as strong evidence of pathogenicity. This has implications for classification with the ACMG guidelines as GoF variants are less likely to meet the criteria for pathogenicity. P = 0.0352 ). GoF variants are therefore less likely to receive the highest REVEL scores which would enable the REVEL score to be used as strong evidence of pathogenicity. This has implications for classification with the ACMG guidelines as GoF variants are less likely to meet the criteria for pathogenicity.Wellcome TrustResearch EnglandNational Institute for Health and Care Research (NIHR
    corecore