16 research outputs found

    OncoLog Volume 47, Number 09, September 2002

    Get PDF
    Is Hormone Replacement Therapy an Option for Women with a History of Breast Cancer? Breast Cancer Survivor Devotes Life to Helping Those at High Risk for Hereditary Cancers I Have Something to Tell You. Counselors Support Family Communication about Genetic Susceptibility to Cancer DiaLog: Bigger than a Blood Test: Ethical Cautions about Genetic Testing, by Martin L. Smith, STD, and Anne J. Flamm, JD House Call: Just a Phase: Understanding Clinical Trials Discovery Sheds Light on How Breast Cancer Cells Progress to More Aggressive Formshttps://openworks.mdanderson.org/oncolog/1109/thumbnail.jp

    Vascular ligand-receptor mapping by direct combinatorial selection in cancer patients

    No full text
    Molecules differentially expressed in blood vessels among organs or between damaged and normal tissues, are attractive therapy targets; however, their identification within the human vasculature is challenging. Here we screened a peptide library in cancer patients to uncover ligand-receptors common or specific to certain vascular beds. Surveying ∼2.35 × 106 motifs recovered from biopsies yielded a nonrandom distribution, indicating that systemic tissue targeting is feasible. High-throughput analysis by similarity search, protein arrays, and affinity chromatography revealed four native ligand-receptors, three of which were previously unrecognized. Two are shared among multiple tissues (integrin α4/annexin A4 and cathepsin B/apolipoprotein E3) and the other two have a restricted and specific distribution in normal tissue (prohibitin/annexin A2 in white adipose tissue) or cancer (RAGE/leukocyte proteinase-3 in bone metastases). These findings provide vascular molecular markers for biotechnology and medical applications

    Atmospheric comparison of electrochemical cell ozonesondes from different manufacturers, and with different cathode solution strenghts: The Balloon Experiment on Standards for Ozonesondes

    No full text
    A balloon flight to compare 18 ozonesondes with an ozone photometer and with ozone column measurements from Dobson and Brewer spectrophotometers was completed in April 2004. The core experiment consisted of 12 electrochemical concentration cell ozonesondes, 6 from Science Pump Corporation (SP) and 6 from ENSCI Corporation (ES), prepared with cathode solution concentrations of 0.5% KI (half buffer) and 1.0% KI (full buffer). Auxiliary ozonesondes consisted of two electrochemical concentration cell sondes with 2.0% KI (no buffer), two reconditioned sondes, and two Japanese-KC96 sondes. Precision of each group of similarly prepared ozonesondes was <2-3%. The six ozonesondes prepared according to the manufacturer's recommendations (SP, 1.0% KI, ES 0.5% KI) overestimated the photometer measurements by 5-10% in the stratosphere, but provided ozone columns in good agreement with the ground-based spectrophotometer measurements. This is consistent with the difference (similar to 5%) in ozone photometer and column measurements observed during the experiment. Using cathode cell concentrations of 1.0% KI for ES sondes caused overestimates of the photometer by 10-15% and of ozone column by 5-10%. In contrast, 0.5% KI in SP sondes led to good agreement with the photometer, but underestimates of ozone column. The KC96 sondes underestimated the photometer measurements by about 5-15% at air pressures above 30 hPa. Agreement was within 5% at lower pressures. Diluting the solution concentration and the buffers from 1.0% to 0.5% KI causes an approximately linear pressure-dependent decrease in ozone for both SP and ES sondes, ratio (0.5 KI/1.0 KI) = 0.9 + 0.024* log(10)(Pressure)
    corecore