289 research outputs found

    Efficacy of PD-1 checkpoint inhibitor therapy in melanoma and beyond: are peripheral T cell phenotypes the key?

    Get PDF
    Immunotherapy treatment strategies have proven effective in a limited portion of patients, where identifying responders from non-responders to treatment remains a challenge. While some indications can be drawn from invasive biopsies, we need more accessible methods for predicting response and better correlates of response prior to starting therapy. Recent work has identified differences in immune composition at baseline in peripheral blood from melanoma patients responding to PD-1 blockade treatment. Through flow cytometric analysis of T cell receptors, phenotypical features of CD8+ and CD4+ T cells and Tregs could allow for the stratification of treatment response. Analysing T cells within peripheral blood could potentially allow for the stratification of PD-1 treatment response prior to therapy in different cancer settings

    Systemic Sclerosis–Associated Interstitial Lung Disease: How to Incorporate Two Food and Drug Administration–Approved Therapies in Clinical Practice

    Get PDF
    Systemic sclerosis (SSc; scleroderma) has the highest individual mortality of all rheumatic diseases and interstitial lung disease (ILD) is among the leading causes of SSc-related death. Two drugs are now approved by the Food & Drug Administration (FDA) and indicated for slowing the rate of decline in pulmonary function in patients with SSc-ILD: nintedanib (a tyrosine kinase inhibitor) and tocilizumab (the first biologic agent targeting the interleukin-6 pathway in SSc). In addition, two generic drugs with cytotoxic and immunoregulatory activity, mycophenolate mofetil and cyclophosphamide, have shown comparable efficacy in a Phase II trial but are not FDA-approved for SSc-ILD. In light of the heterogeneity of the disease, the optimal therapeutic strategy in the management of patients with SSc-ILD is still to be determined. The objectives of this review are two-fold: (1) review the body of research focused on the diagnosis and treatment of SSc-ILD; and (2) propose a practical approach for diagnosis, stratification, management, and therapeutic decision-making in this clinical context. This review presents a practical classification of SSc patients in terms of disease severity (subclinical vs. clinical ILD) and associated risk of progression (low vs. high risk). The pharmacological and non-pharmacological options as first and second-line therapy, as well as potential combination approaches, are discussed in light of the recent approval of tocilizumab for SSc-ILD

    Aberrant innate immune sensing leads to the rapid progression of idiopathic pulmonary fibrosis

    Get PDF
    Novel approaches are needed to define subgroups of patients with Idiopathic pulmonary fibrosis (IPF) at risk for acute exacerbations and/or accelerated progression of this generally fatal disease. Progression of disease is an integral component of IPF with a median survival of 3 to 5 years. Conversely, a high degree of variability in disease progression has been reported among series. The characteristics of patients at risk of earlier death predominantly rely on baseline HRCT appearance, but this concept that has been challenged. Disparate physiological approaches have also been taken to identify patients at risk of mortality, with varying results. We hypothesized that the rapid decline in lung function in IPF may be a consequence of an abnormal host response to pathogen-associated molecular patterns (PAMPs), leading to aberrant activation in fibroblasts and fibrosis. Analysis of upper and lower lobe surgical lung biopsies (SLBs) indicated that TLR9, a hypomethylated CpG DNA receptor, is prominently expressed at the transcript and protein level, most notably in biopsies from rapidly progressive IPF patients. Surprisingly, fibroblasts appeared to be a major cellular source of TLR9 expression in IPF biopsies from this group of progressors. Further, CpG DNA promoted profibrotic cytokine and chemokine synthesis in isolated human IPF fibroblasts, most markedly again in cells from patients with the rapidly progressive IPF phenotype, in a TLR9-dependent manner. Finally, CpG DNA exacerbated fibrosis in an in vivo model initiated by the adoptive transfer of primary fibroblasts derived from patients who exhibited rapidly progressing fibrosis. Together, these data suggested that TLR9 activation via hypomethylated DNA might be an important mechanism in promoting fibrosis particularly in patients prone to rapidly progressing IPF

    Is there a uniform approach to the management of diffuse parenchymal lung disease (DPLD) in the UK? A national benchmarking exercise

    Get PDF
    BACKGROUND: Benchmarking is the comparison of a process to the work or results of others. We conducted a national benchmarking exercise to determine how UK pulmonologists manage common clinical scenarios in diffuse parenchymal lung disease (DPLD), and to determine current use and availability of investigative resources. We compared management decisions to existing international guidelines. METHODS: Consultant members of the British Thoracic Society were mailed a questionnaire seeking their views on the management of three common scenarios in DPLD. They were asked to choose from various management options for each case. Information was also obtained from the respondents on time served as a consultant, type of institution in which they worked and the availability of a local radiologist and histopathologist with an interest/expertise in thoracic medicine. RESULTS: 370 out of 689 consultants replied (54% response rate). There were many differences in the approach to the management of all three cases. Given a scenario of relapsing pulmonary sarcoidosis in a lady with multiple co-morbidities, half of respondents would institute treatment with a variety of immunosuppressants while a half would simply observe. 42% would refer a 57-year old lady with new onset DPLD for a surgical lung biopsy, while a similar number would not. 80% would have referred her for transplantation, but a fifth would not. 50% of consultants from district general hospitals would have opted for a surgical biopsy compared to 24% from cardiothoracic centres: this may reflect greater availability of a radiologist with special interest in thoracic imaging in cardiothoracic centres, obviating the need for tissue diagnosis. Faced with an elderly male with high resolution CT thorax (HRCT) evidence of usual interstitial pneumonia (UIP), three quarters would observe, while a quarter would start immunosuppressants. 11% would refer for a surgical biopsy. 14% of UK pulmonologists responding to the survey revealed they had no access to a radiologist with an interest in thoracic radiology. CONCLUSION: From our survey, it appears there is a lack of consensus in the management of DPLD. This may reflect lack of evidence, lack of resources or a failure to implement current guidelines

    Expression of HSP47 in Usual Interstitial Pneumonia and Nonspecific Interstitial Pneumonia

    Get PDF
    BACKGROUND: Heat shock protein (HSP) 47, a collagen-specific molecular chaperone, is involved in the processing and/or secretion of procollagens, and its expression is increased in various fibrotic diseases. The aim of this study was to determine whether quantitative immunohistochemical evaluation of the expression levels of HSP47, type I procollagen and α-smooth muscle actin (SMA) allows the differentiation of idiopathic usual interstitial pneumonia (UIP) from UIP associated with collagen vascular disease (CVD) and idiopathic nonspecific interstitial pneumonia (NSIP). METHODS: We reviewed surgical lung biopsy specimens of 19 patients with idiopathic UIP, 7 with CVD-associated UIP and 16 with idiopathic NSIP and assigned a score for the expression of HSP47, type I procollagen and α-SMA in type II pneumocytes and/or lung fibroblasts (score 0 = no; 1 = weak; 2 = moderate; 3 = strong staining). RESULTS: The expression level of HSP47 in type II pneumocytes of idiopathic UIP was significantly higher than in CVD-associated UIP and idiopathic NSIP. The expression of HSP47 in fibroblasts was significantly higher in idiopathic UIP and idiopathic NSIP than in CVD-associated UIP. The expression of type I procollagen in type II pneumocytes was significantly higher in idiopathic UIP than in idiopathic NSIP. The expression of type I procollagen in fibroblasts was not different in the three groups, while the expression of α-SMA in fibroblasts was significantly higher in idiopathic UIP than in idiopathic NSIP. CONCLUSION: Our results suggest the existence of different fibrotic pathways among these groups involved in the expression of HSP47 and type I procollagen

    An empirical approach to the nucleation of sulfuric acid droplets in the atmosphere

    Get PDF
    We use quantum mechanical evaluations of the Gibbs free energy of the hydrates of sulfuric acid, H2SO4. nH2O and (H2SO4)2 . nH2O to evaluate an empirical surface tension for sulfuric acid-water clusters containing few molecules. We use this surface tension to evaluate nucleation rates using classical heteromolecular theory. At low temperatures (T 213 K) the nucleation rates obtained with the empirical surface tensions are signifi cantly greater than those using bulk values of the surface tension. At higher temperatures the difference disappears

    Connective tissue disease related interstitial lung diseases and idiopathic pulmonary fibrosis: provisional core sets of domains and instruments for use in clinical trials

    Get PDF
    Rationale Clinical trial design in interstitial lung diseases (ILDs) has been hampered by lack of consensus on appropriate outcome measures for reliably assessing treatment response. In the setting of connective tissue diseases (CTDs), some measures of ILD disease activity and severity may be confounded by non-pulmonary comorbidities. Methods The Connective Tissue Disease associated Interstitial Lung Disease (CTD-ILD) working group of Outcome Measures in Rheumatology—a non-profit international organisation dedicated to consensus methodology in identification of outcome measures—conducted a series of investigations which included a Delphi process including >248 ILD medical experts as well as patient focus groups culminating in a nominal group panel of ILD experts and patients. The goal was to define and develop a consensus on the status of outcome measure candidates for use in randomised controlled trials in CTD-ILD and idiopathic pulmonary fibrosis (IPF). Results A core set comprising specific measures in the domains of lung physiology, lung imaging, survival, dyspnoea, cough and health-related quality of life is proposed as appropriate for consideration for use in a hypothetical 1-year multicentre clinical trial for either CTD-ILD or IPF. As many widely used instruments were found to lack full validation, an agenda for future research is proposed. Conclusion Identification of consensus preliminary domains and instruments to measure them was attained and is a major advance anticipated to facilitate multicentre RCTs in the field

    CD(8+ )T lymphocytes in lung tissue from patients with idiopathic pulmonary fibrosis

    Get PDF
    BACKGROUND: Several studies have implicated a role of inflammation in the pathogenesis of lung damage in idiopathic pulmonary fibrosis (IPF). Parenchymal lung damage leads to defects in mechanics and gas exchange and clinically manifests with exertional dyspnea. Investigations of inflammatory cells in IPF have shown that eosinophils, neutrophils and CD(8+ )TLs may be associated with worse prognosis. We wished to investigate by quantitative immunohistochemistry infiltrating macrophages, neutrophils and T lymphocytes (TLs) subpopulations (CD(3+), CD(4+ )and CD(8+)) in lung tissue of patients with IPF and their correlation with lung function indices and grade of dyspnoea. METHODS: Surgical biopsies of 12 patients with IPF were immunohistochemically stained with mouse monoclonal antibodies (anti-CD(68 )for macrophages, anti-elastase for neutrophils, and anti-CD(3), anti-CD(4), anti-CD(8 )for CD(3+)TLs, CD(4+)TLs, and CD(8+)TLs respectively). The number of positively stained cells was determined by observer-interactive computerized image analysis (SAMBA microscopic image processor). Cell numbers were expressed in percentage of immunopositive nuclear surface in relation to the total nuclear surface of infiltrative cells within the tissue (labeling Index). Correlations were performed between cell numbers and physiological indices [FEV(1), FVC, TLC, DLCO, PaO(2), PaCO(2 )and P(A-a)O(2))] as well as dyspnoea scores assessed by the Medical Research Council (MRC) scale. RESULTS: Elastase positive cells accounted for the 7.04% ± 1.1 of total cells, CD(68+ )cells for the 16.6% ± 2, CD(3+ )TLs for the 28.8% ± 7, CD(4+ )TLs for the 14.5 ± 4 and CD(8+ )TLs for the 13.8 ± 4. CD(8+)TLs correlated inversely with FVC % predicted (r(s )= -0.67, p = 0.01), TLC % predicted (r(s )= -0.68, p = 0.01), DLCO % predicted (r(s )= -0.61, p = 0.04), and PaO(2 )(r(s )= -0.60, p = 0.04). Positive correlations were found between CD(8+)TLs and P(A-a)O(2 )(r(s )= 0.65, p = 0.02) and CD(8+)TLs and MRC score (r(s )= 0.63, p = 0.02). Additionally, CD(68+ )cells presented negative correlations with both FVC % predicted (r(s )= -0.80, p = 0.002) and FEV(1 )% predicted (r(s )= -0.68, p = 0.01). CONCLUSION: In UIP/IPF tissue infiltrating mononuclear cells and especially CD(8+ )TLs are associated with the grade of dyspnoea and functional parameters of disease severity implicating that they might play a role in its pathogenesis
    corecore