3 research outputs found

    Characteristics and Outcomes of Patients Discharged Directly Home from a Medical Intensive Care Unit

    Get PDF
    Introduction: Discharging patients directly home from the ICU is becoming increasingly common, largely driven by decreased ward bed availability. We evaluated readmission patterns of ICU patients discharged directly home. Methods: Retrospective review was conducted of direct discharges from the ICU to home between June 2017 and June 2019. The primary outcome of interest was 30-day hospital readmission. Patients were dichotomized by “wait-time” between transfer order and hospital discharge (\u3c24 hours or ≥24 hours). Outcomes were compared using t-test, Fisher exact, and chi-squared. Risk-adjustment was performed using the Mortality Probability Model (MPM0-III). ICU workload was estimated using the nine equivalents of nursing manpower use score (NEMS). Results: 331 patients were identified, with a mean time of 0.72 [0 - 5.84] days between ICU transfer order and discharge to home. 68.3% (226/331) of patients waited \u3c24 hours for discharge. There was no difference in severity-of-illness or admission NEMS between the groups. 10.3% (45/331) of patients presented for evaluation within 30 days of discharge. 10.3% (34/331) of patients were readmitted. There was no significant difference in 30-day readmission between patients who were discharged after waiting \u3c24 hours vs. waiting ≥24 hours (p=0.70). Discussion: Patients returning directly home from the ICU without discharge delay were not readmitted more frequently within 30 days than those discharged after a delay exceeding 24 hours. Further investigation into identifying patients eligible for safe, early discharge may reduce unnecessary critical care resource utilization

    Characteristics and Outcomes of Patients Discharged Directly Home from a Medical Intensive Care Unit

    Get PDF
    RATIONALE: Discharging patients directly from ICUs is an increasingly common practice, largely due to decreased availability of ward beds. The purpose of this study was to describe the population and evaluate the outcomes of patients discharged directly from the MICU. METHODS: We conducted a retrospective chart review of direct discharges to home from June 2018 to June 2019 from two MICUs. Patients were separated into two groups based on wait time (\u3c24 hours or ≥ 24 hours) between ward transfer order and actual discharge. The primary outcome was 30-day hospital readmission. Risk was adjusted using Mortality Probability Model (MPM-III); ICU workload at admission and discharge was estimated using the nine equivalents of nursing manpower use score (NEMS). Patient characteristics were compared using t-test and Fisher exact or X2. RESULTS: There was no difference in severity-of-illness or admission NEMS between the two groups. Patients who waited \u3c24 hours for discharge were more likely to be admitted from home. Patients who waited ≥24 hours prior to discharge had significantly longer mean hospital LOS compared to those who waited \u3c24 hours (4.63 days vs. 2.65 days, p\u3c0.001). There was no significant difference in 30-day readmission between patients who were discharged after waiting \u3c24 hours vs. waiting ≥24 hours (p=0.70). CONCLUSION: Patients who returned directly home from the MICU without any discharge delay were not readmitted to the hospital more frequently within 30 days than those discharged to home after a delay exceeding 24 hours. Further investigation into identifying those patients for whom early discharge planning directly to home from the ICU is viable and safe may aid in reducing unnecessary critical care resource utilization

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore