18 research outputs found
Does congenital deafness affect the structural and functional architecture of primary visual cortex?
Deafness results in greater reliance on the remaining senses. It is unknown whether the cortical architecture of the intact senses is optimized to compensate for lost input. Here we performed widefield population receptive field (pRF) mapping of primary visual cortex (V1) with functional magnetic resonance imaging (fMRI) in hearing and congenitally deaf participants, all of whom had learnt sign language after the age of 10 years. We found larger pRFs encoding the peripheral visual field of deaf compared to hearing participants. This was likely driven by larger facilitatory center zones of the pRF profile concentrated in the near and far periphery in the deaf group. pRF density was comparable between groups, indicating pRFs overlapped more in the deaf group. This could suggest that a coarse coding strategy underlies enhanced peripheral visual skills in deaf people. Cortical thickness was also decreased in V1 in the deaf group. These findings suggest deafness causes structural and functional plasticity at the earliest stages of visual cortex
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Recommended from our members
Freshwater and anadromous fishing in Ice Age Beringia
While freshwater and anadromous fish have been critical economic resources for late prehistoric and modern Native Americans, the origin and development of fishing is not well understood. We document the earliest known human use of freshwater and anadromous fish in North America by 13,000 and 11,800 years ago, respectively, from primary anthropogenic contexts in central Alaska (eastern Beringia). Fish use appears conditioned by broad climatic factors, as all occurrences but one are within the Younger Dryas chronozone. Earlier Bølling- Allerød and later early Holocene components, while exhibiting similar organic preservation, did not yield evidence of fishing, suggesting that this was a response to changing environmental factors, perhaps reductions in higher ranked resources such as large terrestrial mammals. Late Pleistocene and recent Indigenous peoples harvested similar fish taxa in the region (salmon, burbot, whitefish, and pike). We characterize late Pleistocene fishing in interior Beringia as an important element of broad-spectrum foraging rather than the intensive communal fishing and storage common among recent peoples. © 2023 The Authors.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Paleoclimate, Paleoclimate history of the Arctic
Although the Arctic occupies less than 5% of the Earth's surface, it includes some of the strongest positive feedbacks in the climate system. Reconstructing the climate history of the Quaternary requires a suite of climate proxies that can be placed in a secure time frame. Most Arctic proxies reflect past summer temperatures, although a subset is sensitive to winter temperatures and/or precipitation. During the Quaternary, the Arctic has experienced a greater change in temperature, vegetation, and ocean surface characteristics than has any other Northern Hemisphere latitudinal band. Arctic temperature amplification is a consequence of several strong positive feedbacks. They include the fast feedbacks of snow and ice albedo, sea-ice insulation, vegetation, and permafrost, as well as a suite of slower responding feedbacks operating on glacial–interglacial timescales tied to the growth and decay of aerially extensive, thick continental ice sheets. Large changes in Arctic temperatures impact regions outside the Arctic through their proximal influence on the planetary energy balance and circulation of the Northern Hemisphere atmosphere and ocean, and with potential global impacts through changes in sea level, the release of greenhouse gases, and impacts on the ocean's meridional overturning circulation. Quantitative paleoclimate reconstructions for specific cold and warm times during the Quaternary suggest that Arctic temperature changes have been 3 to 4 times the corresponding hemispheric or globally averaged changes. This article provides a brief overview of climate changes leading up to the last ice age, then overviews the changes in Arctic climate during the Quaternary