58 research outputs found

    A Measurement of Time-Averaged Aerosol Optical Depth using Air-Showers Observed in Stereo by HiRes

    Full text link
    Air fluorescence measurements of cosmic ray energy must be corrected for attenuation of the atmosphere. In this paper we show that the air-showers themselves can yield a measurement of the aerosol attenuation in terms of optical depth, time-averaged over extended periods. Although the technique lacks statistical power to make the critical hourly measurements that only specialized active instruments can achieve, we note the technique does not depend on absolute calibration of the detector hardware, and requires no additional equipment beyond the fluorescence detectors that observe the air showers. This paper describes the technique, and presents results based on analysis of 1258 air-showers observed in stereo by the High Resolution Fly's Eye over a four year span.Comment: 7 pages, 3 figures, accepted for publication by Astroparticle Physics Journa

    Observation of the Ankle and Evidence for a High-Energy Break in the Cosmic Ray Spectrum

    Full text link
    We have measured the cosmic ray spectrum at energies above 101710^{17} eV using the two air fluorescence detectors of the High Resolution Fly's Eye experiment operating in monocular mode. We describe the detector, PMT and atmospheric calibrations, and the analysis techniques for the two detectors. We fit the spectrum to models describing galactic and extragalactic sources. Our measured spectrum gives an observation of a feature known as the ``ankle'' near 3×10183\times 10^{18} eV, and strong evidence for a suppression near 6×10196\times 10^{19} eV.Comment: 14 pages, 9 figures. To appear in Physics Letters B. Accepted versio

    A Likelihood Method for Measuring the Ultrahigh Energy Cosmic Ray Composition

    Get PDF
    Air fluorescence detectors traditionally determine the dominant chemical composit ion of the ultrahigh energy cosmic ray flux by comparing the averaged slant depth of the shower maximum, XmaxX_{max}, as a function of energy to the slant depths expect ed for various hypothesized primaries. In this paper, we present a method to make a direct measurement of the expected mean number of protons and iron by comparing the shap es of the expected XmaxX_{max} distributions to the distribution for data. The advantages of this method includes the use of information of the full distribution and its ability to calculate a flux for various cosmic ray compositi ons. The same method can be expanded to marginalize uncertainties due to choice of spectra, hadronic models and atmospheric parameters. We demonstrate the technique with independent simulated data samples from a parent sample of protons and iron. We accurately predict the number of protons and iron in the parent sample and show that the uncertainties are meaningful.Comment: 11 figures, 22 pages, accepted by Astroparticle Physic

    Alternative Methods to Finding Patterns in HiRes Stereo Data

    Get PDF
    In this paper Ultra High Energy Cosmic Rays UHECRs data observed by the HiRes fluorescence detector in stereo mode is analyzed to search for events in the sky with an arrival direction lying on a great circle. Such structure is known as the arc structure. The arc structure is expected when the charged cosmic rays pass through the galactic magnetic field. The arcs searched for could represent a broad or a small scale anisotropy depending on the proposed source model for the UHECRs. The Arcs in this paper are looked for using Hough transform were Hough transform is a technique used to looking for patterns in images. No statistically significant arcs were found in this study

    Insights into the high-energy γ-ray emission of Markarian 501 from extensive multifrequency observations in the Fermi era

    Get PDF
    We report on the γ-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size ≲0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (≃1044 erg s-1) constitutes only a small fraction (∼10-3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude. © 2011. The American Astronomical Society

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Ubiquitin-like protein Hub1 is required for pre-mRNA splicing and localization of an essential splicing factor in fission yeast

    Get PDF
    Hub1/Ubl5 is a member of the family of ubiquitin-like proteins (UBLs). The tertiary structure of Hub1 is similar to that of ubiquitin; however, it differs from known modifiers in that there is no conserved glycine residue near the C terminus which, in ubiquitin and UBLs, is required for covalent modification of target proteins. Instead, there is a conserved dityrosine motif proximal to the terminal nonconserved amino acid. In S. cerevisiae, high molecular weight adducts can be formed in vivo from Hub1, but the structure of these adducts is not known, and they could be either covalent or noncovalent. The budding yeast HUB1 gene is not essential, but Delta hub1 mutants display defects in mating. Here, we report that fission yeast hub1 is an essential gene, whose loss results in cell cycle defects and inefficient pre-mRNA splicing. A screen for Hub1 interactors identified Snu66, a component of the U4/U6.U5 tri-snRNP splicing complex. Furthermore, overexpression of Snu66 suppresses the lethality of a hub1ts mutant. In cells lacking functional hub1, the nuclear localization of Snu66 is disrupted, suggesting that an important role for Hub1 is the correct subcellular targeting of Snu66, although our data suggest that Hub1 is likely to perform other roles in splicing as well

    Pediatric pain: prevalence, assessment, and management in a teaching hospital

    No full text
    The goal of this study was to examine the prevalence, assessment and management of pediatric pain in a public teaching hospital. The study sample consisted of 121 inpatients (70 infants, 36 children, and 15 adolescents), their families, 40 physicians, and 43 nurses. All participants were interviewed except infants and children who could not communicate due to their clinical status. The interview included open-ended questions concerning the inpatients’ pain symptoms during the 24 h preceding data collection, as well as pain assessment and pharmacological/non-pharmacological management of pain. The data were obtained from 100% of the eligible inpatients. Thirty-four children/adolescents (28%) answered the questionnaire and for the other 72% (unable to communicate), the family/health professional caregivers reported pain. Among these 34 persons, 20 children/adolescents reported pain, 68% of whom reported that they received pharmacological intervention for pain relief. Eighty-two family caregivers were available on the day of data collection. Of these, 40 family caregivers (49%) had observed their child’s pain response. In addition, 74% reported that the inpatients received pharmacological management. Physicians reported that only 38% of the inpatients exhibited pain signs, which were predominantly acute pain detected during clinical procedures. They reported that 66% of patients received pharmacological intervention. The nurses reported pain signs in 50% of the inpatients, which were detected during clinical procedures. The nurses reported that pain was managed in 78% of inpatients by using pharmacological and/or non-pharmacological interventions. The findings provide evidence of the high prevalence of pain in pediatric inpatients and the under-recognition of pain by health professionals
    corecore