67 research outputs found
Identification and mapping of quantitative resistance to late blight (Phytophthora infestans) in Solanum habrochaites LA1777
Late blight (Phytophthora infestans) can have devastating effects on tomato production over the whole world. Most of the commercial cultivars of tomato, Solanum lycopersicum, are susceptible. Qualitative and quantitative resistance has been described in wild relatives of tomato. In general qualitative resistance can more easily be overcome by newly evolved isolates. Screening of three S. habrochaites accessions (LA1033, LA2099 and LA1777) through a whole plant assay showed that accession LA1777 had a good level of resistance to several isolates of P. infestans. To explore the potential in this wild species, an introgression line (IL) population of S. habrochaites LA1777 was used to screen individual chromosome regions of the wild species by a detached leaf assay. Two major isolates (T1,2 and T1,2,4) were used and two parameters were measured: lesion size (LS), and disease incidence (DI). Substantial variation was observed between the individual lines. QTLs were identified for LS but not for DI. The presence of five QTLs derived from LA1777 (Rlbq4a, Rlbq4b, Rlbq7, Rlbq8 and Rlbq12) results in unambiguous higher levels of resistance. All QTLs co-localized with previously described QTLs from S. habrochaites LA2099 except QTL Rlbq4b, which is therefore a novel QT
De tomatenkaart is klaar, wat nu?
In 2012 publiceerde Nature de genomische sequentie van de tomaat. Maar daarmee is het werk niet af, zegt Richard Finkers. Hij bepaalde de basenvolgorde van nog eens 150 verwanten van de modeltomaat, om plantenveredelaars in staat te stellen op zoek te gaan naar nieuwe genen in oude rassen
Seedling salt tolerance in tomato
Soils with higher concentrations of salt are becoming more and more a constraint for many crops to obtain high yields. Wild tomato species, adapted to adverse environments, are a potential reservoir for genes underlying quantitative trait loci (QTL) related to salt tolerance in tomato. In this study two introgression line (IL) libraries derived from two different wild species, Solanum pennellii LA716 and Solanum lycopersicoides LA2951, were used to identify QTLs for salt tolerance in the seedling stage. In the S. pennellii IL library, four major QTLs were identified on chromosomes 6, 7 and 11. In the S. lycopersicoides IL library, six major QTLs were discovered which are located on chromosomes 4, 6, 9 and 12. Co-localization of QTLs on chromosome 6 in the two IL libraries and previously reports hinted that this locus might be conserved in the tomato crop. Three S. pennellii ILs (IL6-2, IL7-1 and IL7-5) harboring QTLs on chromosome 6 and 7 were crossed. Semi-dominance and dominance were shown for these three QTLs, and non-additive and epistatic interactions between them were observe
Using semantic web technology to accelerate plant breeding
One goal within plant breeding is to find the causal gene(s) explaining a given phenotype. Semantic web technology brings opportu- nities to integration data and information accross spread data sources. Chebi2gene and Marker2sequence are two applications relying on this se- mantic web technology to integration genes, proteins, metabolites, path- ways, literature. Their web-based interface allows biologists to use and explore this network of information
SolRgene: an online database to explore disease resistance genes in tuber-bearing Solanum species
Background The cultivated potato (Solanum tuberosum L.) is an important food crop, but highly susceptible to many pathogens. The major threat to potato production is the Irish famine pathogen Phytophthora infestans, which causes the devastating late blight disease. Potato breeding makes use of germplasm from wild relatives (wild germplasm) to introduce resistances into cultivated potato. The Solanum section Petota comprises tuber-bearing species that are potential donors of new disease resistance genes. The aim of this study was to explore Solanum section Petota for resistance genes and generate a widely accessible resource that is useful for studying and implementing disease resistance in potato. Description The SolRgene database contains data on resistance to P. infestans and presence of R genes and R gene homologues in Solanum section Petota. We have explored Solanum section Petota for resistance to late blight in high throughput disease tests under various laboratory conditions and in field trials. From resistant wild germplasm, segregating populations were generated and assessed for the presence of resistance genes. All these data have been entered into the SolRgene database. To facilitate genetic and resistance gene evolution studies, phylogenetic data of the entire SolRgene collection are included, as well as a tool for generating phylogenetic trees of selected groups of germplasm. Data from resistance gene allele-mining studies are incorporated, which enables detection of R gene homologs in related germplasm. Using these resources, various resistance genes have been detected and some of these have been cloned, whereas others are in the cloning pipeline. All this information is stored in the online SolRgene database, which allows users to query resistance data, sequences, passport data of the accessions, and phylogenic classifications. Conclusion Solanum section Petota forms the basis of the SolRgene database, which contains a collection of resistance data of an unprecedented size and precision. Complemented with R gene sequence data and phylogenetic tools, SolRgene can be considered the primary resource for information on R genes from potato and wild tuber-bearing relatives
Pedigree genotyping: a new pedigree-based approach of QTL identification and allele mining by exploiting breeding material
To date, molecular markers have been made available for many economically important traits. Unfortunately, lack of knowledge of their allelic variation hampers their full exploitation in commercial breeding programs. These markers have usually been identified in one single cross. Consequently, only one or two favourable alleles of the related QTL are identified and may be exploited for marker-assisted breeding (MAB), while a breeding program may include several alleles. Selection for only these alleles means that many favourable genotypes are ignored, which decreases efficiency and leads to genetic erosion. A new approach, called pedigree genotyping, allows the identification and exploitation of the majority of alleles present in an ongoing breeding program. This is achieved by including breeding material itself in QTL detection, so covering multiple generations and linking many crosses through their common ancestors in the pedigree. The principle of Identity by Descent (IBD) is utilised to express the identity of an allele of a modern selection in terms of alleles of founding cultivars. These founder alleles are used as factors in statistical analysis. Co-dominant markers, like SSR (= microsatellite) markers, are essential in this approach since they are able to connect cultivars, breeding selections and progenies at the molecular marker level by monitoring specific chromosomal segments along family trees. Additional advantages of the use of breeding genetic material are (1) a major reduction in experimental costs since plant material is already available and phenotyped by default (2) continuity over generations within breeding programs with regard to marker research (3) the testing of QTL-alleles against a wide range of genetic backgrounds, making results generally applicable (4) possibility to explore intra- as well as inter-QTL interactions. Fruit firmness in apple is used as an example to illustrate the principles of this powerful approach to detect QTLs and estimate their allelic variation. Prospects for strawberry are also indicate
Pedigree genotyping: a new pedigree-based approach of QTL identification and allele mining
To date, molecular markers are available for many economically important traits. Unfortunately, lack of knowledge of the allelic variation of the related genes hampers their full exploitation in commercial breeding programs. These markers have usually been identified in one single cross. Consequently, only one or two favourable alleles of the related QTL are identified and exploitable for marker-assisted breeding (MAB), whereas a breeding program may include several alleles. Selection for just these alleles means that many favourable genotypes are ignored, which decreases efficiency and leads to genetic erosion. A new approach, called Pedigree Genotyping, allows the identification and exploitation of most alleles present in an ongoing breeding program. This is achieved by including breeding material itself in QTL detection, thus covering multiple generations and linking many crosses through their common ancestors in the pedigree. The principle of Identity by Descent (IBD) is utilised to express the identity of an allele of a modern selection in terms of alleles of founding cultivars. These founder alleles are used as factors in statistical analyses. Co-dominant markers like SSR (microsatellite) markers are essential in this approach since they are able to connect cultivars, breeding selections and progenies at the molecular marker level by monitoring specific chromosomal segments along family trees. Additional advantages of the use of breeding genetic material are (1) a major reduction in experimental costs since plant material is already available and phenotyped by default (2) continuity over generations within breeding programs with regard to marker research (3) the testing of QTL-alleles against a wide range of genetic backgrounds, making results generally applicable, (4) intra- as well as inter-QTL interactions can be explored. Fruit firmness in apple will be used as an example to illustrate the principles of this powerful approach to detect QTLs and estimate their allelic variatio
Crop Ontology: Vocabulary For Crop-related Concepts
Abstract. A recurrent issue for data integration is the lack of a common and structured vocabulary used by different parties to describe their data sets. The Crop Ontology (www.cropontology.org) project aims to provide a central place where the crop community can gather to generate such standardized vocabularies and structure them into ontologies. Having standardized ontologies opens the world of the Semantic Web to data integration between different data providers. Crop Ontology is a community-based project, providing a central place for the creation of crop-related ontologies, but it can also be integrated into third-party tools through its Application Programming Interface, providing retrieval of specific terms or a more generic search functionality for all terms. The ontologies are available in RDF format, described using the OWL and RDFS standards, allowing them to be consumed by popular semantic reasoners. We believe that Crop Ontology will lead to better description of crop-related data, improving collaboration between partners and should serve as an example for other scientific fields
Tomato breeding in the genomics era: insights from a SNP array
Background - The major bottle neck in genetic and linkage studies in tomato has been the lack of a sufficient number of molecular markers. This has radically changed with the application of next generation sequencing and high throughput genotyping. A set of 6000 SNPs was identified and 5528 of them were used to evaluate tomato germplasm at the level of species, varieties and segregating populations. Results - From the 5528 SNPs, 1980 originated from 454-sequencing, 3495 from Illumina Solexa sequencing and 53 were additional known markers. Genotyping different tomato samples allowed the evaluation of the level of heterozygosity and introgressions among commercial varieties. Cherry tomatoes were especially different from round/beefs in chromosomes 4, 5 and 12. We were able to identify a set of 750 unique markers distinguishing S. lycopersicum 'Moneymaker' from all its distantly related wild relatives. Clustering and neighbour joining analysis among varieties and species showed expected grouping patterns, with S. pimpinellifolium as the most closely related to commercial tomatoesearlier results. Conclusions - Our results show that a SNP search in only a few breeding lines already provides generally applicable markers in tomato and its wild relatives. It also shows that the Illumina bead array generated data are highly reproducible. Our SNPs can roughly be divided in two categories: SNPs of which both forms are present in the wild relatives and in domesticated tomatoes (originating from common ancestors) and SNPs unique for the domesticated tomato (originating from after the domestication event). The SNPs can be used for genotyping, identification of varieties, comparison of genetic and physical linkage maps and to confirm (phylogenetic) relations. In the SNPs used for the array there is hardly any overlap with the SolCAP array and it is strongly recommended to combine both SNP sets and to select a core collection of robust SNPs completely covering the entire tomato genom
Possibilities and challenges of the potato genome sequence
This paper describes the progress that has been made since the draft genome sequence of potato has been obtained and the analyses that need to be done to make further progress. Although sequencing has become less expensive and read lengths have increased, making optimal use of the information obtained is still difficult, certainly in the tetraploid potato crop. Major challenges in potato genomics are standardized genome assembly and haplotype analysis. Sequencing methods need to be improved further to achieve precision breeding. With the current new generation sequencing technology, the focus in potato breeding will shift from phenotype improvement to genotype improvement. In this respect, it is essential to realize that different alleles of the same gene can lead to different phenotypes depending on the genetic background and that there is significant epistatic interaction between different alleles. Genome-wide association studies will gain statistical power when binary single nucleotide polymorphism (SNP) data can be replaced with multi-allelic haplotype data. Binary SNP can be distributed across the many different alleles per locus or may be haplotype-specific, and potentially tag specific alleles which clearly differ in their contribution to a certain trait value. Assembling reads from the same linkage phase proved to allow constructing sufficiently long haplotype tracts to ensure their uniqueness. Combining large phenotyping data sets with modern approaches to sequencing and haplotype analysis and proper software will allow the efficiency of potato breeding to increase
- …