28 research outputs found

    The Churches' Bans on Consanguineous Marriages, Kin-Networks and Democracy

    Full text link
    This paper highlights the role of kin-networks for the functioning of modern societies: countries with strong extended families as characterized by a high level of cousin marriages exhibit a weak rule of law and are more likely autocratic. To assess causality, I exploit a quasi-natural experiment. In the early medieval ages the Church started to prohibit kin-marriages. Using the variation in the duration and extent of the Eastern and Western Churches' bans on consanguineous marriages as instrumental variables, reveals highly significant point estimates of the percentage of cousin marriage on an index of democracy. An additional novel instrument, cousin-terms, strengthens this point: the estimates are very similar and do not rest on the European experience alone. Exploiting within country variation of cousin marriages in Italy, as well as within variation of a 'societal marriage pressure' indicator for a larger set of countries support these results. These findings point to a causal effect of marriage patterns on the proper functioning of formal institutions and democracy. The study further suggests that the Churches' marriage rules - by destroying extended kin-groups - led Europe on its special path of institutional and democratic development

    Synergistic Effects of Three Piper Amides on Generalist and Specialist Herbivores

    No full text
    The tropical rainforest shrub Piper cenocladum, which is normally defended against herbivores by a mutualistic ant, contains three amides that have various defensive functions. While the ants are effective primarily against specialist herbivores, we hypothesized that these secondary compounds would be effective against a wider range of insects, thus providing a broad array of defenses against herbivores. We also tested whether a mixture of amides would be more effective against herbivores than individual amides. Diets spiked with amides were offered to five herbivores: a naïve generalist caterpillar (Spodoptera frugiperda), two caterpillar species that are monophagous on P. cenocladum (Eois spp.), leaf-cutting ants (Atta cephalotes), and an omnivorous ant (Paraponera clavata). Amides had negative effects on all insects, whether they were naïve, experienced, generalized, or specialized feeders. For Spodoptera, amide mixtures caused decreased pupal weights and survivorship and increased development times. Eois pupal weights, larval mass gain, and development times were affected by additions of individual amides, but increased parasitism and lower survivorship were caused only by the amide mixture. Amide mixtures also deterred feeding by the two ant species, and crude plant extracts were strongly deterrent to P. clavata. The mixture of all three amides had the most dramatic deterrent and toxic effects across experiments, with the effects usually surpassing expected additive responses, indicating that these compounds can act synergistically against a wide array of herbivor

    Synergistic Effects of Three Piper Amides on Generalist and Specialist Herbivores

    No full text
    The tropical rainforest shrub Piper cenocladum, which is normally defended against herbivores by a mutualistic ant, contains three amides that have various defensive functions. While the ants are effective primarily against specialist herbivores, we hypothesized that these secondary compounds would be effective against a wider range of insects, thus providing a broad array of defenses against herbivores. We also tested whether a mixture of amides would be more effective against herbivores than individual amides. Diets spiked with amides were offered to five herbivores: a naïve generalist caterpillar (Spodoptera frugiperda), two caterpillar species that are monophagous on P. cenocladum (Eois spp.), leaf-cutting ants (Atta cephalotes), and an omnivorous ant (Paraponera clavata). Amides had negative effects on all insects, whether they were naïve, experienced, generalized, or specialized feeders. For Spodoptera, amide mixtures caused decreased pupal weights and survivorship and increased development times. Eois pupal weights, larval mass gain, and development times were affected by additions of individual amides, but increased parasitism and lower survivorship were caused only by the amide mixture. Amide mixtures also deterred feeding by the two ant species, and crude plant extracts were strongly deterrent to P. clavata. The mixture of all three amides had the most dramatic deterrent and toxic effects across experiments, with the effects usually surpassing expected additive responses, indicating that these compounds can act synergistically against a wide array of herbivor
    corecore