22 research outputs found

    An assessment of gene prediction accuracy in large DNA sequences

    Full text link
    One of the first useful products from the human genome will be a set of predicted genes. Besides its intrinsic scientific interest, the accuracy and completeness of this data set is of considerable importance for human health and medicine. Though progress has been made on computational gene identification in terms of both methods and accuracy evaluation measures, most of the sequence sets in which the programs are tested are short genomic sequences, and there is concern that these accuracy measures may not extrapolate well to larger, more challenging data sets. Given the absence of experimentally verified large genomic data sets, we constructed a semiartificial test set comprising a number of short single-gene genomic sequences with randomly generated intergenic regions. This test set, which should still present an easier problem than real human genomic sequence, mimics the ∼200kb long BACs being sequenced. In our experiments with these longer genomic sequences, the accuracy ofGENSCAN, one of the most accurate ab initio gene prediction programs, dropped significantly, although its sensitivity remained high. Conversely, the accuracy of similarity-based programs, such as GENEWISE,PROCRUSTES, andBLASTX, was not affected significantly by the presence of random intergenic sequence, but depended on the strength of the similarity to the protein homolog. As expected, the accuracy dropped if the models were built using more distant homologs, and we were able to quantitatively estimate this decline. However, the specificities of these techniques are still rather good even when the similarity is weak, which is a desirable characteristic for driving expensive follow-up experiments. Our experiments suggest that though gene prediction will improve with every new protein that is discovered and through improvements in the current set of tools, we still have a long way to go before we can decipher the precise exonic structure of every gene in the human genome using purely computational methodology

    Promoter prediction using physico-chemical properties of DNA

    Get PDF
    The ability to locate promoters within a section of DNA is known to be a very difficult and very important task in DNA analysis. We document an approach that incorporates the concept of DNA as a complex molecule using several models of its physico-chemical properties. A support vector machine is trained to recognise promoters by their distinctive physical and chemical properties. We demonstrate that by combining models, we can improve upon the classification accuracy obtained with a single model. We also show that by examining how the predictive accuracy of these properties varies over the promoter, we can reduce the number of attributes needed. Finally, we apply this method to a real-world problem. The results demonstrate that such an approach has significant merit in its own right. Furthermore, they suggest better results from a planned combined approach to promoter prediction using both physicochemical and sequence based techniques

    Towards an Ensemble Learning Strategy for Metagenomic Gene Prediction

    No full text

    Using Suffix Trees for Gapped Motif Discovery

    No full text

    Report of Observations of Mars in 1939, IV

    Get PDF
    Translation initiation sites (TIS) are important signals in cDNA sequences. Many research efforts have tried to predict TIS in cDNA sequences. In this paper, we propose using mixture Gaussian models to predict TIS in cDNA sequences. Some new global measures are used to generate numerical features from cDNA sequences, such as the length of the open reading frame downstream from ATG, the number of other ATGs upstream and downstream from the current ATGs, etc. With these global features, the proposed method predicts TIS with sensitivity 98 % and specificity 92%. The sensitivity is much better than that from other methods. We attribute the improvement in sensitivity to the nature of the global features and the mixture Gaussian models
    corecore