418 research outputs found

    A Unique Continuation Result for Klein-Gordon Bisolutions on a 2-dimensional Cylinder

    Get PDF
    We prove a novel unique continuation result for weak bisolutions to the massive Klein-Gordon equation on a 2-dimensional cylinder M. Namely, if such a bisolution vanishes in a neighbourhood of a `sufficiently large' portion of a 2-dimensional surface lying parallel to the diagonal in the product manifold of M with itself, then it is (globally) translationally invariant. The proof makes use of methods drawn from Beurling's theory of interpolation. An application of our result to quantum field theory on 2-dimensional cylinder spacetimes will appear elsewhere.Comment: LaTeX2e, 9 page

    Leap of Death

    Get PDF
    ‘Leap of Death’ is collaborative, multi-media project by composer Robert Stillman, artist Anna Fewster, and bookbinder Sarah Bryant. It seeks to interpret archival material for the ‘lost’ 1929 F.W. Murnau film ‘4 Devils’. The main output of the project is a limited edition of 50 bookwork/LP’s that use letterpress text, trace-monotype print images, and recorded music to construct an abstract, non-linear ‘impression’ of the film’s narrative. The project also included a ‘live’ version of this work using projections of the bookwork text and imagery, and performance of the music by the ensemble The Archaic Future Players. The wider research questions for this project include: • Can archival research be carried out and disseminated as contemporary artistic/creative work? What is distinctive about such an approach (compared, for example, to scholarly research). • How can creative content (i.e. narrative) in one form, like film, be translated into, or indeed extended by, other forms like still image, text, and music? • How can ‘traditional’ media like slideshows, live/recorded music, or books present narrative structure in an ‘open’ (i.e. non-linear way?) • How can a digital format (i.e. web) most effectively represent physical media (i.e. an artist’s bookwork)

    Quantum energy inequalities in two dimensions

    Full text link
    Quantum energy inequalities (QEIs) were established by Flanagan for the massless scalar field on two-dimensional Lorentzian spacetimes globally conformal to Minkowski space. We extend his result to all two-dimensional globally hyperbolic Lorentzian spacetimes and use it to show that flat spacetime QEIs give a good approximation to the curved spacetime results on sampling timescales short in comparison with natural geometric scales. This is relevant to the application of QEIs to constrain exotic spacetime metrics.Comment: 4 pages, REVTeX. This is an expanded version of a portion of gr-qc/0409043. To appear in Phys Rev

    On the spin-statistics connection in curved spacetimes

    Full text link
    The connection between spin and statistics is examined in the context of locally covariant quantum field theory. A generalization is proposed in which locally covariant theories are defined as functors from a category of framed spacetimes to a category of ∗*-algebras. This allows for a more operational description of theories with spin, and for the derivation of a more general version of the spin-statistics connection in curved spacetimes than previously available. The proof involves a "rigidity argument" that is also applied in the standard setting of locally covariant quantum field theory to show how properties such as Einstein causality can be transferred from Minkowski spacetime to general curved spacetimes.Comment: 17pp. Contribution to the proceedings of the conference "Quantum Mathematical Physics" (Regensburg, October 2014

    Quantum inequalities for the free Rarita-Schwinger fields in flat spacetime

    Full text link
    Using the methods developed by Fewster and colleagues, we derive a quantum inequality for the free massive spin-32{3\over 2} Rarita-Schwinger fields in the four dimensional Minkowski spacetime. Our quantum inequality bound for the Rarita-Schwinger fields is weaker, by a factor of 2, than that for the spin-12{1\over 2} Dirac fields. This fact along with other quantum inequalities obtained by various other authors for the fields of integer spin (bosonic fields) using similar methods lead us to conjecture that, in the flat spacetime, separately for bosonic and fermionic fields, the quantum inequality bound gets weaker as the the number of degrees of freedom of the field increases. A plausible physical reason might be that the more the number of field degrees of freedom, the more freedom one has to create negative energy, therefore, the weaker the quantum inequality bound.Comment: Revtex, 11 pages, to appear in PR

    Quantum inequalities in two dimensional curved spacetimes

    Get PDF
    We generalize a result of Vollick constraining the possible behaviors of the renormalized expected stress-energy tensor of a free massless scalar field in two dimensional spacetimes that are globally conformal to Minkowski spacetime. Vollick derived a lower bound for the energy density measured by a static observer in a static spacetime, averaged with respect to the observers proper time by integrating against a smearing function. Here we extend the result to arbitrary curves in non-static spacetimes. The proof, like Vollick's proof, is based on conformal transformations and the use of our earlier optimal bound in flat Minkowski spacetime. The existence of such a quantum inequality was previously established by Fewster.Comment: revtex 4, 5 pages, no figures, submitted to Phys. Rev. D. Minor correction
    • …
    corecore