594 research outputs found

    A Semi-Lagrangian Scheme with Radial Basis Approximation for Surface Reconstruction

    Full text link
    We propose a Semi-Lagrangian scheme coupled with Radial Basis Function interpolation for approximating a curvature-related level set model, which has been proposed by Zhao et al. in \cite{ZOMK} to reconstruct unknown surfaces from sparse, possibly noisy data sets. The main advantages of the proposed scheme are the possibility to solve the level set method on unstructured grids, as well as to concentrate the reconstruction points in the neighbourhood of the data set, with a consequent reduction of the computational effort. Moreover, the scheme is explicit. Numerical tests show the accuracy and robustness of our approach to reconstruct curves and surfaces from relatively sparse data sets.Comment: 14 pages, 26 figure

    EZH2, HIF-1, and their inhibitors: An overview on pediatric cancers

    Get PDF
    During the past decades, several discoveries have established the role of epigenetic modifications and cellularmicroenvironment in tumor growth and progression. One of the main representatives concerning epigenetic modification is the polycomb group (PcG). It is composed of different highly conserved epigenetic effector proteins preserving, through several post-translational modifications of histones, the silenced state of the genes implicated in a wide range of central biological events such as development, stem cell formation, and tumor progression. Proteins of the PcG can be divided in polycomb repressive complexes (PRCs): PRC1 and PRC2. In particular, enhancer of zeste homolog 2 (EZH2), the catalytic core subunit of PRC2, acts as an epigenetic silencer ofmany tumor suppressor genes through the trimethylation of lysine 27 on histone H3, an essential binding site for DNA methyl transferases and histone deacetylases. A growing number of data suggests that overexpression of EZH2 associates with progression and poor outcome in a large number of cancer cases. Hypoxia inducible factor (HIF) is an important transcription factor involved in modulating cellular response to the microenvironment by promoting and regulating tumor development such as angiogenesis, inflammation, metabolic reprogramming, invasion, and metastatic fate. The HIF complex is represented by different subunits (α and β) acting together and promoting the expression of vascular endothelial growth factor (VEGF), hexokinase II (HKII), receptor for advanced glycation end products (RAGE), carbonic anhydrase (CA), etc., after binding to the hypoxia-response element (HRE) binding site on the DNA. In this review, we will try to connect these two players by detailing the following: (i) the activity and influence of these two important regulators of cancer progression in particular for what concerns pediatric tumors, (ii) the possible correlation between them, and (iii) the feasibility and efficiency to contrast them using several inhibitors

    IRE1α deficiency promotes tumor cell death and eIF2α degradation through PERK dipendent autophagy

    Get PDF
    Sensors of endoplasmic reticulum (ER) stress function in a co-ordinated manner. In the present study we investigated the relationship between IRE1α and PERK pathways and survival of ER stressed U937 cells and BC3 cells. To this end, we investigated the effects of a subcytotoxic concentration of Tunicamycin in IRE1α-proficient and in IRE1α-deficient cells, by pharmacological inhibition with 4μ8 C or down-regulation by specific siRNA. We show that either type of IRE1α deficiency affects eIF2α expression and causes cell death increase. GSK2606414, a PERK inhibitor, and PERK specific siRNA prevent eIF2α down-regulation and restore cell survival. Degradation of this protein is due to autophagy, as it is prevented by bafilomycin and not by proteasome inhibition. Furthermore, activation of the autophagy flux is PERK dependent. Also the Cathepsin B inhibitor CA074 prevents eIF2α from degradation and reduces cell death. Altogether, these results show that IRE1α deficiency in ER stressed cells leads to an unexpected decrease of eIF2α, an important molecule for protein translation, through PERK dependent autophagy. Thus, IRE1/XBP1 inhibitors may represent a feasible strategy for tumor therapy, while PERK inhibitors may vanish the goal

    Numb Isoforms Deregulation in Medulloblastoma and Role of p66 Isoform in Cancer and Neural Stem Cells

    Get PDF
    Numb is an intracellular protein with multiple functions. The two prevalent isoforms, Numb p66 and Numb p72, are regulators of differentiation and proliferation in neuronal development. Additionally, Numb functions as cell fate determinant of stem cells and cancer stem cells and its abnormal expression has been described in several types of cancer. Involvement of deregulated Numb expression has been described in the malignant childhood brain tumor medulloblastoma, while Numb isoforms in these tumors and in cancer stem-like cells derived from them, have not been studied to date. Here we show that medulloblastoma stem-like cells and cerebellar neuronal stem cells (NSCs) express Numb p66 where its expression tampers stemness features. Furthermore, medulloblastoma samples evaluated in this study express decreased levels of Numb p66 while overexpressed Numb p72 compared with normal tissues. Our results uncover different roles for the two major Numb isoforms examined in medulloblastoma and a critical role for Numb p66 in regulating stem-like cells and NSCs maintenance

    Second order fully semi-Lagrangian discretizations of advection-diffusion-reaction systems

    Get PDF
    We propose a second order, fully semi-Lagrangian method for the numerical solution of systems of advection-diffusion-reaction equations, which employs a semi-Lagrangian approach to approximate in time both the advective and the diffusive terms. Standard interpolation procedures are used for the space discretization on structured and unstructured meshes. The proposed method allows for large time steps, while avoiding the solution of large linear systems, which would be required by an implicit time discretization technique. Numerical experiments demonstrate the effectiveness of the proposed approach and its superior efficiency with respect to more conventional explicit and implicit time discretization

    Role of tissue and circulating microRNA and DNA as biomarkers in medullary thyroid cancer

    Get PDF
    Medullary thyroid carcinoma (MTC) is a rare neuroendocrine tumor comprising hereditary or sporadic form with frequent mutations in the rearranged during transfection (RET) or RAS genes. Diagnosis is based on presence of thyroid tumor mass with altered levels of calcitonin (Ctn) and carcinoembryonal antigen (CEA) in the serum and/or in the cytological smears from fine needle aspiration biopsies. Treatment consists of total thyroidectomy, followed by tyrosine kinase inhibitors (TKi) in case of disease persistence. During TKi treatment, Ctn and CEA levels can fluctuate regardless of tumor volume, metastasis or response to therapy. Research for more reliable non-invasive biomarkers in MTC is still underway. In this context, circulating nucleic acids, namely circulating microRNAs (miRNAs) and cell free DNA (cfDNA), have been evaluated by different research groups. Aiming to shed light on whether miRNAs and cfDNA are suitable as MTC biomarkers we searched three different databases, PubMed, Scopus, WOS and reviewed literature. We classified 83 publications fulfilling our search criteria and summarized the results. We report data on miRNA and cfDNA that can be evaluated for validation in independent studies and clinical application
    • …
    corecore