2 research outputs found

    Chemical post-processing of magneto-hydrodynamical simulations of star-forming regions: robustness and pitfalls

    Full text link
    A common approach to model complex chemistry in numerical simulations is via post-processing of existing magneto-hydrodynamic simulations, relying on computing the evolution of chemistry over the dynamic history of a subset of particles from within the raw simulation. Here, we validate such a technique, assessing its ability to recover the abundances of chemical species, using the chemistry package KROME. We also assess, for the first time, the importance of the main free input parameters, by means of a direct comparison with a self-consistent state-of-the-art simulation in which chemistry was directly coupled to hydrodynamics. We have found that the post-processing is highly reliable, with an accuracy at the percent level, even when the most relaxed input parameters are employed. In particular, our results show that the number of particles used does not affect significantly the average properties, although it suppresses the appearance of possibly important spatial features. On the other hand, the choice of the integration time-step plays a crucial role. Longer integration time-steps can produce large errors, as the post-processing solution will be forced towards chemical equilibrium, a condition that does not always necessarily apply. When the interpolation-based reconstruction of chemical properties is performed, the errors further increase up to a factor of ∼2\sim2. Concluding, our results suggest that this technique is extremely useful when exploring the relative quantitative effect of different chemical parameters and/or networks, without the need of re-running simulations multiple times, but some care should be taken in the choice of particles sub-sample and integration time-step.Comment: 11 pages, 6 figures, 3 table

    The GRETOBAPE gas-phase reaction network: the importance of being exothermic

    Full text link
    The gas-phase reaction networks are the backbone of astrochemical models. However, due to their complexity and non-linear impact on the astrochemical modeling, they can be the first source of error in the simulations if incorrect reactions are present. Over time, following the increasing number of species detected, astrochemists have added new reactions, based on laboratory experiments and quantum mechanics (QM) computations as well as reactions inferred by chemical intuition and similarity principle. However, sometimes no verification of their feasibility in the interstellar conditions, namely their exothermicity, was performed. In this work, we present a new gas-phase reaction network, GRETOBAPE, based on the KIDA2014 network and updated with several reactions, cleaned from endothermic reactions not explicitly recognized as such. To this end, we characterized all the species in the GRETOBAPE network with accurate QM calculations. We found that 5% of the reactions in the original network are endothermic although most of them are reported as barrierless. The reaction network of Si-bearing species is the most impacted by the endothermicity cleaning process. We also produced a cleaned reduced network, GRETOBAPE-red, to be used to simulate astrochemical situations where only C-, O-, N- and S- bearing species with less than 6 atoms are needed. Finally, the new GRETOBAPE network, its reduced version, as well as the database with all the molecular properties are made publicly available. The species properties database can be used in the future to test the feasibility of possibly new reactions.Comment: ApJS submitte
    corecore