35 research outputs found

    ExoClock Project. III: 450 new exoplanet ephemerides from ground and space observations

    Get PDF
    The ExoClock project has been created to increase the efficiency of the Ariel mission. It will achieve this by continuously monitoring and updating the ephemerides of Ariel candidates, in order to produce a consistent catalog of reliable and precise ephemerides. This work presents a homogenous catalog of updated ephemerides for 450 planets, generated by the integration of ∼18,000 data points from multiple sources. These sources include observations from ground-based telescopes (the ExoClock network and the Exoplanet Transit Database), midtime values from the literature, and light curves from space telescopes (Kepler, K2, and TESS). With all the above, we manage to collect observations for half of the postdiscovery years (median), with data that have a median uncertainty less than 1 minute. In comparison with the literature, the ephemerides generated by the project are more precise and less biased. More than 40% of the initial literature ephemerides had to be updated to reach the goals of the project, as they were either of low precision or drifting. Moreover, the integrated approach of the project enables both the monitoring of the majority of the Ariel candidates (95%), and also the identification of missing data. These results highlight the need for continuous monitoring to increase the observing coverage of the candidate planets. Finally, the extended observing coverage of planets allows us to detect trends (transit-timing variations) for a sample of 19 planets. All the products, data, and codes used in this work are open and accessible to the wider scientific community.La lista completa de autores que integran el documento puede consultarse en el archivo.Facultad de Ciencias Astronómicas y Geofísica

    A cyclical period variation detected in the updated orbital period analysis of TV Columbae

    Get PDF
    Two CCD photometries of the intermediate polar TV Columbae are made for obtaining two updated eclipse timings with high precision. There is an interval time ~17 yr since the last mid-eclipse time observed in 1991. Thus, the new mid-eclipse times might offer an opportunity to check the previous orbital ephemerides. A calculation indicates that the orbital ephemeris derived by Augusteijn et al. (Astron. Astrophys. Suppl. Ser. 107:219, 1994) should be corrected. Based on the proper linear ephemeris (Hellier in Mon. Not. R. Astron. Soc. 264:132, 1993), the new orbital period analysis suggests a cyclical period variation in the O-C diagram of TV Columbae. Using Applegate's mechanism to explain the periodic oscillation in the O-C diagram, the required energy is larger than the energy that a M0-type star can afford over a complete variation period of ~31.0(±3.0) yr. Thus, the light travel-time effect indicates that the tertiary component in TV Columbae may be a dwarf with a low mass, which is near the lower mass limit of ~0.08M⊙ as long as the inclination of the third body is high enough.Facultad de Ciencias Astronómicas y Geofísica

    The Evolution of the Supersoft X-Ray Source WX Cen Dominated by Magnetic Wind

    Get PDF
    WX Cen is most likely one of the Galactic counterparts of compact binary supersoft X-ray sources as a member of the V Sagittae class, in which mass is transferred from a donor secondary to a massive white dwarf primary via an accretion disk. Based on the photometric observations from the TESS space telescope and AAVSO database, 218 times of light minimum were determined. By collecting all available eclipse timings of WX Cen from the literature together with those newly determined, we constructed an O−C diagram and analyzed the variations in the orbital period of the eclipsing binary. It is confirmed that the orbital period is continuously decreasing and the rate of the change in the orbital period is revised to P = -4.4(4)x10⁻⁷day yr⁻¹ = -0.038(3) s yr⁻¹. The mass of the donor secondary is estimated as Ms ∼ 0.6 Me☉, when the white dwarf mass is MWD ∼ 0.9 M☉ By considering a conservative mass transfer from the secondary to the primary, the orbital period of WX Cen should be increasing, which is opposite to the observed continuous decrease. Therefore, the decrease in the period can be plausibly explained as the result of angular momentum loss (AML) via magnetic wind from the secondary and/or from the accretion disk. The AML causes the donor secondary with a low mass to continually be filling its critical Roche lobe and transferring material to the white dwarf. In this way, the evolution of WX Cen is dominated by the magnetic wind and continuously radiating supersoft X-rays.Instituto de Astrofísica de La Plat

    VVV DR1: The first data release of the Milky Way bulge and southern plane from the near-infrared ESO public survey VISTA variables in the Vía Láctea

    Get PDF
    Context. The ESO public survey VISTA variables in the Vía Láctea (VVV) started in 2010. VVV targets 562 sq. deg in the Galactic bulge and an adjacent plane region and is expected to run for about five years. Aims. We describe the progress of the survey observations in the first observing season, the observing strategy, and quality of the data obtained. Methods. The observations are carried out on the 4-m VISTA telescope in the ZYJHKs filters. In addition to the multi-band imaging the variability monitoring campaign in the Ks filter has started. Data reduction is carried out using the pipeline at the Cambridge Astronomical Survey Unit. The photometric and astrometric calibration is performed via the numerous 2MASS sources observed in each pointing. Results. The first data release contains the aperture photometry and astrometric catalogues for 348 individual pointings in the ZYJHKs filters taken in the 2010 observing season. The typical image quality is ∼0′′.9-1′′.0. The stringent photometric and image quality requirements of the survey are satisfied in 100% of the JHKs images in the disk area and 90% of the JHKs images in the bulge area. The completeness in the Z and Y images is 84% in the disk, and 40% in the bulge. The first season catalogues contain 1.28 × 108 stellar sources in the bulge and 1.68 × 108 in the disk area detected in at least one of the photometric bands. The combined, multi-band catalogues contain more than 1.63 × 108 stellar sources. About 10% of these are double detections because of overlapping adjacent pointings. These overlapping multiple detections are used to characterise the quality of the data. The images in the JHKs bands extend typically ∼4 mag deeper than 2MASS. The magnitude limit and photometric quality depend strongly on crowding in the inner Galactic regions. The astrometry for Ks = 15-18 mag has rms ∼35-175 mas. Conclusions. The VVV Survey data products offer a unique dataset to map the stellar populations in the Galactic bulge and the adjacent plane and provide an exciting new tool for the study of the structure, content, and star-formation history of our Galaxy, as well as for investigations of the newly discovered star clusters, star-forming regions in the disk, high proper motion stars, asteroids, planetary nebulae, and other interesting objects.La lista completa de autores que integran el documento puede consultarse en el archivo.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    VVV DR1: The first data release of the Milky Way bulge and southern plane from the near-infrared ESO public survey VISTA variables in the Vía Láctea

    Get PDF
    Context. The ESO public survey VISTA variables in the Vía Láctea (VVV) started in 2010. VVV targets 562 sq. deg in the Galactic bulge and an adjacent plane region and is expected to run for about five years. Aims. We describe the progress of the survey observations in the first observing season, the observing strategy, and quality of the data obtained. Methods. The observations are carried out on the 4-m VISTA telescope in the ZYJHKs filters. In addition to the multi-band imaging the variability monitoring campaign in the Ks filter has started. Data reduction is carried out using the pipeline at the Cambridge Astronomical Survey Unit. The photometric and astrometric calibration is performed via the numerous 2MASS sources observed in each pointing. Results. The first data release contains the aperture photometry and astrometric catalogues for 348 individual pointings in the ZYJHKs filters taken in the 2010 observing season. The typical image quality is ∼0′′.9-1′′.0. The stringent photometric and image quality requirements of the survey are satisfied in 100% of the JHKs images in the disk area and 90% of the JHKs images in the bulge area. The completeness in the Z and Y images is 84% in the disk, and 40% in the bulge. The first season catalogues contain 1.28 × 108 stellar sources in the bulge and 1.68 × 108 in the disk area detected in at least one of the photometric bands. The combined, multi-band catalogues contain more than 1.63 × 108 stellar sources. About 10% of these are double detections because of overlapping adjacent pointings. These overlapping multiple detections are used to characterise the quality of the data. The images in the JHKs bands extend typically ∼4 mag deeper than 2MASS. The magnitude limit and photometric quality depend strongly on crowding in the inner Galactic regions. The astrometry for Ks = 15-18 mag has rms ∼35-175 mas. Conclusions. The VVV Survey data products offer a unique dataset to map the stellar populations in the Galactic bulge and the adjacent plane and provide an exciting new tool for the study of the structure, content, and star-formation history of our Galaxy, as well as for investigations of the newly discovered star clusters, star-forming regions in the disk, high proper motion stars, asteroids, planetary nebulae, and other interesting objects.La lista completa de autores que integran el documento puede consultarse en el archivo.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    Photometric study of three ultrashort-period contact binaries

    Get PDF
    We carried out high-precision photometric observations of three eclipsing ultrashort-period contact binaries (USPCBs). Theoretical models were fitted to the light curves by means of the Wilson-Devinney code. The solutions suggest that the three targets have evolved to a contact phase. The photometric results are as follows: (a) 1SWASP J030749.87−365201.7, q= 0.439 ± 0.003 , f= 0.0 ± 3.6 % ; (b) 1SWASP J213252.93−441822.6, q= 0.560 ± 0.003 , f= 14.2 ± 1.9 % ; (c) 1SWASP J200059.78+054408.9, q= 0.436 ± 0.008 , f= 58.4 ± 1.8 %. The light curves show O’Connell effects, which can be modeled by the assumed cool spots. The cool spots models are strongly supported by the night-to-night variations in the I-band light curves of 1SWASP J030749.87−365201.7. For a comparative study, we collected the whole set of 28 well-studied USPCBs with P 50 %). Generally, contact binaries with deep fill-out factors are going to merge, but it is believed that USPCBs have just evolved to a contact phase. Hence, the deep USPCB 1SWASP J200059.78+054408.9 seems to be a contradiction, making it very interesting. Particularly, 1SWASP J030749.87−365201.7 is a zero contact binary in thermal equilibrium, implying that it should be a turn-off sample as predicted by the thermal relaxation oscillation (TRO) theory.Instituto de Astrofísica de La Plat

    Photometric study of three ultrashort-period contact binaries

    Get PDF
    We carried out high-precision photometric observations of three eclipsing ultrashort-period contact binaries (USPCBs). Theoretical models were fitted to the light curves by means of the Wilson-Devinney code. The solutions suggest that the three targets have evolved to a contact phase. The photometric results are as follows: (a) 1SWASP J030749.87−365201.7, q= 0.439 ± 0.003 , f= 0.0 ± 3.6 % ; (b) 1SWASP J213252.93−441822.6, q= 0.560 ± 0.003 , f= 14.2 ± 1.9 % ; (c) 1SWASP J200059.78+054408.9, q= 0.436 ± 0.008 , f= 58.4 ± 1.8 %. The light curves show O’Connell effects, which can be modeled by the assumed cool spots. The cool spots models are strongly supported by the night-to-night variations in the I-band light curves of 1SWASP J030749.87−365201.7. For a comparative study, we collected the whole set of 28 well-studied USPCBs with P 50 %). Generally, contact binaries with deep fill-out factors are going to merge, but it is believed that USPCBs have just evolved to a contact phase. Hence, the deep USPCB 1SWASP J200059.78+054408.9 seems to be a contradiction, making it very interesting. Particularly, 1SWASP J030749.87−365201.7 is a zero contact binary in thermal equilibrium, implying that it should be a turn-off sample as predicted by the thermal relaxation oscillation (TRO) theory.Instituto de Astrofísica de La Plat

    Evolutionary states of the two shortest period O-type overcontact binaries V382 Cyg and TU Mus

    Get PDF
    Up to now, V382 Cyg and TU Mus are the only two discovered O-type overcontact binary stars with periods less than two days (P = 1.8855 and 1.3873 d). Both systems contain a visual companion. New eclipse times and analyses of orbital period variations of the two systems are presented. It is discovered that the periods of both binaries show cyclic oscillations with periods of 47.70 and 47.73 yr, while they undergo continuous increases at rates of dP/dt = +4.4 × 10−7 and +4.0 × 10−7 d yr−1, respectively. The periodic variations can be interpreted as light travel times effects caused by the presence of invisible tertiary components suggesting that they may be quadruple systems. It is possible that the additional bodies may play an important role in the formation and evolution of the two massive overcontact binaries by removing angular momentum from the central systems, and causing the eclipsing pairs to have lower angular momentum and shorter initial orbital periods. In this way, the original detached systems can evolve into the present overcontact configurations via a Case A mass transfer. This is in agreement with the observed long-term period increase of V382 Cyg and TU Mus, which can be explained by mass transfers from the less massive components to the more massive ones. It is found that the time-scales of the long-term period variations of both systems are much longer than the thermal time-scales of the secondary components, but are close to their nuclear time-scales. This suggests that the two massive binaries have been through the rapid mass-transfer evolutionary stage on the thermal time-scales of the secondaries, and they are now on the slow phase of Case A mass transfer. It is shown that massive overcontact binaries are going through a short-lived overcontact configuration during the evolutionary phases of Case A mass transfer, which is different from the situation of late-type overcontact binary stars where components remain in good overcontact configuration driving by a combination of thermal relaxation oscillation and variable angular momentum loss via change in overcontact depth. This conclusion is in agreement with the distribution of overcontact binary stars along with the orbital period.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    Active Luminous Blue Variables in the Large Magellanic Cloud

    Get PDF
    We present extensive spectroscopic and photometric monitoring of two famous and currently highly active luminous blue variables (LBVs) in the Large Magellanic Cloud (LMC), together with more limited coverage of three further, lesser known members of the class. R127 was discovered as an Ofpe/WN9 star in the 1970s but entered a classical LBV outburst in or about 1980 that is still in progress, thus enlightening us about the minimum state of such objects. R71 is currently the most luminous star in the LMC and continues to provide surprises, such as the appearance of [Ca ii] emission lines, as its spectral type becomes unprecedentedly late. Most recently, R71 has developed inverse P Cyg profiles in many metal lines. The other objects are as follows: HDE 269582, now a "second R127" that has been followed from Ofpe/WN9 to A type in its current outburst; HDE 269216, which changed from late B in 2014 to AF in 2016, its first observed outburst; and R143 in the 30 Doradus outskirts. The light curves and spectroscopic transformations are correlated in remarkable detail and their extreme reproducibility is emphasized, both for a given object and among all of them. It is now believed that some LBVs proceed directly to core collapse. One of these unstable LMC objects may thus oblige in the near future, teaching us even more about the final stages of massive stellar evolution.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    Evolutionary states of the two shortest period O-type overcontact binaries V382 Cyg and TU Mus

    Get PDF
    Up to now, V382 Cyg and TU Mus are the only two discovered O-type overcontact binary stars with periods less than two days (P = 1.8855 and 1.3873 d). Both systems contain a visual companion. New eclipse times and analyses of orbital period variations of the two systems are presented. It is discovered that the periods of both binaries show cyclic oscillations with periods of 47.70 and 47.73 yr, while they undergo continuous increases at rates of dP/dt = +4.4 × 10−7 and +4.0 × 10−7 d yr−1, respectively. The periodic variations can be interpreted as light travel times effects caused by the presence of invisible tertiary components suggesting that they may be quadruple systems. It is possible that the additional bodies may play an important role in the formation and evolution of the two massive overcontact binaries by removing angular momentum from the central systems, and causing the eclipsing pairs to have lower angular momentum and shorter initial orbital periods. In this way, the original detached systems can evolve into the present overcontact configurations via a Case A mass transfer. This is in agreement with the observed long-term period increase of V382 Cyg and TU Mus, which can be explained by mass transfers from the less massive components to the more massive ones. It is found that the time-scales of the long-term period variations of both systems are much longer than the thermal time-scales of the secondary components, but are close to their nuclear time-scales. This suggests that the two massive binaries have been through the rapid mass-transfer evolutionary stage on the thermal time-scales of the secondaries, and they are now on the slow phase of Case A mass transfer. It is shown that massive overcontact binaries are going through a short-lived overcontact configuration during the evolutionary phases of Case A mass transfer, which is different from the situation of late-type overcontact binary stars where components remain in good overcontact configuration driving by a combination of thermal relaxation oscillation and variable angular momentum loss via change in overcontact depth. This conclusion is in agreement with the distribution of overcontact binary stars along with the orbital period.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat
    corecore