20 research outputs found

    Waveforms Eavesdropping Prevention Framework: The Case of Classification of EPG Waveforms of Aphid Utilizing Wavelet Kernel Extreme Learning Machine

    No full text
    Since all information depends solely on the training data, machine learning algorithms typically do not employ external knowledge or other experiences during the learning process. Methods for machine learning have been rigorously tested against novel varieties of highly technical “black box” or “white box” adversarial attacks. By employing attacks, attackers can change systems to serve a harmful end goal. When authorized implementers and eavesdroppers are geographically close together, it is difficult to perform secure beamforming in waveform applications, for instance, leading to erroneous beam forms and, as a result, disastrous beam leakages. As a result, the first move in a prospective black-box offense will be based on the waveform features of a learning signal. By including a non-orthogonality concept into the physical layer signal waveform, the Waveforms Eavesdropping Prevention Framework (WEPF) proposed in this work aims to boost machine learning security to address these difficulties. The implementation scenario is based on a waveforms scenario used to categorize the Electrical Penetration Graph (EPG) for insects, a crucial tool for researching the feeding conduct of piercing-sucking insects and the transition mechanism between viruses and insects. An attribute vector with six dimensions, consisting of low-frequency wavelet energy (LFWE) in the second and third layers of the Wavelet Kernel Extreme Learning Machine, fractal box dimension (FBD), the Hurst exponent (HE), and spectral centroid (SC) in the first two layers of the HHT, was used to test the proposed framework. Two adversarial scenarios were explored. However, the suggested architecture secures all waveform signals, demonstrating the method’s effectiveness in lowering the risk of eavesdropping or tampering with the waveforms used in advanced machine-learning methods

    A note on distance spectral radius of trees

    No full text
    The distance spectral radius of a connected graph is the largest eigenvalue of its distance matrix. We determine the unique non-starlike non-caterpillar tree with maximal distance spectral radius

    Investigation on hydrodynamic lubrication effect of micro groove seal in pharmaceutical kettle.

    No full text
    To improve the lubrication conditions of the seal in the pharmaceutical kettles, a specific shape groove with micrometer level on the sealing end face is set up to fully utilize the fluid dynamic pressure effect under given working conditions. A numerical model is developed to solve the pressure distribution in the micro groove, where any groove shape can be used. The numerical form of the model is derived using the principle of mass conservation without considering the film thickness derivative term, and the coordinate transformation is introduced to adapt to the curved shape of the groove. The cavitation phenomenon is taken into account in the flow field of the seal, and the JFO cavitation model is introduced to modify the Reynolds equation. The diversity of groove shapes is considered, and the node adsorption method is adopted to approximate the groove shape. The model is established based on the principle of mass conservation, which can adapt to any different groove shapes and has a strong scalability. By mathematical modeling and solving, the performances of the micro groove seal under different groove shapes are analyzed, providing a basis for the micro groove design of seal in pharmaceutical kettles

    Effects of Bradyrhizobium Co-Inoculated with Bacillus and Paenibacillus on the Structure and Functional Genes of Soybean Rhizobacteria Community

    No full text
    Plant growth-promoting rhizobacteria (PGPR) are widely used to improve soil nutrients and promote plant growth and health. However, the growth-promoting effect of a single PGPR on plants is limited. Here, we evaluated the effect of applying rhizobium Bradyrhizobium japonicum 5038 (R5038) and two PGPR strains, Bacillus aryabhattai MB35-5 (BA) and Paenibacillus mucilaginosus 3016 (PM), alone or in different combinations on the soil properties and rhizosphere bacterial community composition of soybean (Glycine max). Additionally, metagenomic sequencing was performed to elucidate the profile of functional genes. Inoculation with compound microbial inoculant containing R5038 and BA (RB) significantly improved nodule nitrogenase activity and increased soil nitrogen content, and urease activity increased the abundance of the nitrogen cycle genes and Betaproteobacteria and Chitinophagia in the rhizosphere. In the treatment of inoculant-containing R5038 and PM (RP), significant changes were found for the abundance of Deltaproteobacteria and Gemmatimonadetes and the phosphorus cycle genes, and soil available phosphorus and phosphatase activity were increased. The RBP inoculants composed of three strains (R5038, BA and PM) significantly affected soybean biomass and the N and P contents of the rhizosphere. Compared with RB and RP, RBP consistently increased soybean nitrogen content, and dry weight. Overall, these results showed that several PGPR with different functions could be combined into composite bacterial inoculants, which coordinately modulate the rhizosphere microbial community structure and improve soybean growth

    Phenotype-Genotype Association Analysis of ACTH-Secreting Pituitary Adenoma and Its Molecular Link to Patient Osteoporosis

    No full text
    Adrenocorticotrophin (ACTH)-secreting pituitary adenoma, also known as Cushing disease (CD), is rare and causes metabolic syndrome, cardiovascular disease and osteoporosis due to hypercortisolism. However, the molecular pathogenesis of CD is still unclear because of a lack of human cell lines and animal models. Here, we study 106 clinical characteristics and gene expression changes from 118 patients, the largest cohort of CD in a single-center. RNA deep sequencing is used to examine genotypic changes in nine paired female ACTH-secreting pituitary adenomas and adjacent nontumorous pituitary tissues (ANPT). We develop a novel analysis linking disease clinical characteristics and whole transcriptomic changes, using Pearson Correlation Coefficient to discover a molecular network mechanism. We report that osteoporosis is distinguished from the phenotype and genotype analysis. A cluster of genes involved in osteoporosis is identified using Pearson correlation coefficient analysis. Most of the genes are reported in the bone related literature, confirming the feasibility of phenotype-genotype association analysis, which could be used in the analysis of almost all diseases. Secreted phosphoprotein 1 (SPP1), collagen type I α 1 chain (COL1A1), 5′-nucleotidase ecto (NT5E), HtrA serine peptidase 1 (HTRA1) and angiopoietin 1 (ANGPT1) and their signalling pathways are shown to be involved in osteoporosis in CD patients. Our discoveries provide a molecular link for osteoporosis in CD patients, and may open new potential avenues for osteoporosis intervention and treatment
    corecore