281 research outputs found
Experimental validation of a self-calibrating cryogenic mass flowmeter
The Karlsruhe Institute of Technology (KIT) and the WEKA AG jointly develop a commercial flowmeter for application in helium cryostats. The flowmeter functions according to a new thermal measurement principle that eliminates all systematic uncertainties and enables self-calibration during real operation. Ideally, the resulting uncertainty of the measured flow rate is only dependent on signal noises, which are typically very small with regard to the measured value. Under real operating conditions, cryoplant-dependent flow rate fluctuations induce an additional uncertainty, which follows from the sensitivity of the method. This paper presents experimental results with helium at temperatures between 30 and 70 K and flow rates in the range of 4 to 12 g/s. The experiments were carried out in a control cryostat of the 2 kW helium refrigerator of the TOSKA test facility at KIT. Inside the cryostat, the new flowmeter was installed in series with a Venturi tube that was used for reference measurements. The measurement results demonstrate the self-calibration capability during real cryoplant operation. The influences of temperature and flow rate fluctuations on the self-calibration uncertainty are discussed
Testing Hadronic-Model Predictions of Depth of Maximum of Air-Shower Profiles and Ground-Particle Signals using Hybrid Data of the Pierre Auger Observatory
We test the predictions of hadronic interaction models regarding the depth of
maximum of air-shower profiles, , and ground-particle signals in
water-Cherenkov detectors at 1000 m from the shower core, , using the
data from the fluorescence and surface detectors of the Pierre Auger
Observatory. The test consists in fitting the measured two-dimensional
(, ) distributions using templates for simulated air showers
produced with hadronic interaction models EPOS-LHC, QGSJet II-04, Sibyll 2.3d
and leaving the scales of predicted and the signals from hadronic
component at ground as free fit parameters. The method relies on the assumption
that the mass composition remains the same at all zenith angles, while the
longitudinal shower development and attenuation of ground signal depend on the
mass composition in a correlated way.
The analysis was applied to 2239 events detected by both the fluorescence and
surface detectors of the Pierre Auger Observatory with energies between
to eV and zenith angles below . We found,
that within the assumptions of the method, the best description of the data is
achieved if the predictions of the hadronic interaction models are shifted to
deeper values and larger hadronic signals at all zenith angles. Given
the magnitude of the shifts and the data sample size, the statistical
significance of the improvement of data description using the modifications
considered in the paper is larger than even for any linear
combination of experimental systematic uncertainties.Comment: Published versio
Constraints on metastable superheavy dark matter coupled to sterile neutrinos with the Pierre Auger Observatory
Dark matter particles could be superheavy, provided their lifetime is much longer than the age of the Universe. Using the sensitivity of the Pierre Auger Observatory to ultrahigh energy neutrinos and photons, we constrain a specific extension of the Standard Model of particle physics that meets the lifetime requirement for a superheavy particle by coupling it to a sector of ultralight sterile neutrinos. Our results show that, for a typical dark coupling constant of 0.1, the mixing angle Ξm between active and sterile neutrinos must satisfy, roughly, Ξm âČ 1.5 Ă 10â6(M X =10 9 GeV)â2 for a mass M X of the dark-matter particle between 108 GeV and 10 11 GeV
Searches for Ultra-High-Energy Photons at the Pierre Auger Observatory
The Pierre Auger Observatory, being the largest air-shower experiment in the
world, offers an unprecedented exposure to neutral particles at the highest
energies. Since the start of data taking more than 18 years ago, various
searches for ultra-high-energy (UHE, ) photons have
been performed: either for a diffuse flux of UHE photons, for point sources of
UHE photons or for UHE photons associated with transient events like
gravitational wave events. In the present paper, we summarize these searches
and review the current results obtained using the wealth of data collected by
the Pierre Auger Observatory.Comment: Review article accepted for publication in Universe (special issue on
ultra-high energy photons
Radio Measurements of the Depth of Air-Shower Maximum at the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA), part of the Pierre Auger
Observatory, is currently the largest array of radio antenna stations deployed
for the detection of cosmic rays, spanning an area of km with 153
radio stations. It detects the radio emission of extensive air showers produced
by cosmic rays in the MHz band. Here, we report the AERA measurements
of the depth of the shower maximum (), a probe for mass
composition, at cosmic-ray energies between to eV,
which show agreement with earlier measurements with the fluorescence technique
at the Pierre Auger Observatory. We show advancements in the method for radio
reconstruction by comparison to dedicated sets of CORSIKA/CoREAS
air-shower simulations, including steps of reconstruction-bias identification
and correction, which is of particular importance for irregular or sparse radio
arrays. Using the largest set of radio air-shower measurements to date, we show
the radio resolution as a function of energy, reaching a
resolution better than g cm at the highest energies, demonstrating
that radio measurements are competitive with the established
high-precision fluorescence technique. In addition, we developed a procedure
for performing an extensive data-driven study of systematic uncertainties,
including the effects of acceptance bias, reconstruction bias, and the
investigation of possible residual biases. These results have been
cross-checked with air showers measured independently with both the radio and
fluorescence techniques, a setup unique to the Pierre Auger Observatory.Comment: Submitted to Phys. Rev.
The Pierre Auger Observatory Open Data
The Pierre Auger Collaboration has embraced the concept of open access to
their research data since its foundation, with the aim of giving access to the
widest possible community. A gradual process of release began as early as 2007
when 1% of the cosmic-ray data was made public, along with 100% of the
space-weather information. In February 2021, a portal was released containing
10% of cosmic-ray data collected from 2004 to 2018, during Phase I of the
Observatory. The Portal included detailed documentation about the detection and
reconstruction procedures, analysis codes that can be easily used and modified
and, additionally, visualization tools. Since then the Portal has been updated
and extended. In 2023, a catalog of the 100 highest-energy cosmic-ray events
examined in depth has been included. A specific section dedicated to
educational use has been developed with the expectation that these data will be
explored by a wide and diverse community including professional and
citizen-scientists, and used for educational and outreach initiatives. This
paper describes the context, the spirit and the technical implementation of the
release of data by the largest cosmic-ray detector ever built, and anticipates
its future developments.Comment: 19 pages, 8 figure
Expected performance of the AugerPrime Radio Detector
The AugerPrime Radio Detector will significantly increase the sky coverage of mass-sensitive measurements of ultra-high energy cosmic rays with the Pierre Auger Observatory. The detection of highly inclined air showers with the worldâs largest 3000 km2 radio-antenna array in coincidence with the Auger water-Cherenkov detector provides a clean separation of the electromagnetic and muonic shower components. The combination of these highly complementary measurements yields a strong sensitivity to the mass composition of cosmic rays. We will present the first results of an end-to-end simulation study of the performance of the AugerPrime Radio Detector. The study features a complete description of the AugerPrime radio antennas and reconstruction of the properties of inclined air showers, in particular the electromagnetic energy. The performance is evaluated utilizing a comprehensive set of simulated air showers together with recorded background. The estimation of an energy- and direction-dependent aperture yields an estimation of the expected 10-year event statistics. The potential to measure the number of muons in air showers with the achieved statistics is outlined. Based on the achieved energy resolution, the potential to discriminate between different cosmic-ray primaries is presented
Design, upgrade and characterization of the silicon photomultiplier front-end for the AMIGA detector at the Pierre Auger Observatory
AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the
Pierre Auger Observatory to complement the study of ultra-high-energy cosmic
rays (UHECR) by measuring the muon content of extensive air showers (EAS). It
consists of an array of 61 water Cherenkov detectors on a denser spacing in
combination with underground scintillation detectors used for muon density
measurement. Each detector is composed of three scintillation modules, with 10
m detection area per module, buried at 2.3 m depth, resulting in a total
detection area of 30 m. Silicon photomultiplier sensors (SiPM) measure the
amount of scintillation light generated by charged particles traversing the
modules. In this paper, the design of the front-end electronics to process the
signals of those SiPMs and test results from the laboratory and from the Pierre
Auger Observatory are described. Compared to our previous prototype, the new
electronics shows a higher performance, higher efficiency and lower power
consumption, and it has a new acquisition system with increased dynamic range
that allows measurements closer to the shower core. The new acquisition system
is based on the measurement of the total charge signal that the muonic
component of the cosmic ray shower generates in the detector.Comment: 40 pages, 33 figure
- âŠ