39 research outputs found

    Deduction and Definability in Infinite Statistical Systems

    Get PDF
    Classical accounts of intertheoretic reduction involve two pieces: first, the new terms of the higher-level theory must be definable from the terms of the lower-level theory, and second, the claims of the higher-level theory must be deducible from the lower-level theory along with these definitions. The status of each of these pieces becomes controversial when the alleged reduction involves an infinite limit, as in statistical mechanics. Can one define features of or deduce the behavior of an infinite idealized system from a theory describing only finite systems? In this paper, I change the subject in order to consider the motivations behind the definability and deducibility requirements. The classical accounts of intertheoretic reduction are appealing because when the definability and deducibility requirements are satisfied there is a sense in which the reduced theory is forced upon us by the reducing theory and the reduced theory contains no more information or structure than the reducing theory. I will show that, likewise, there is a precise sense in which in statistical mechanics the properties of infinite limiting systems are forced upon us by the properties of finite systems, and the properties of infinite systems contain no information beyond the properties of finite systems

    Reductive Explanation and the Construction of Quantum Theories

    Get PDF
    I argue that philosophical issues concerning reductive explanations help constrain the construction of quantum theories with appropriate state spaces. I illustrate this general proposal with two examples of restricting attention to physical states in quantum theories: regular states and symmetry-invariant states

    The classical limit of a state on the Weyl algebra

    Get PDF
    This paper considers states on the Weyl algebra of the canonical commutation relations over the phase space R^{2n}. We show that a state is regular iff its classical limit is a countably additive Borel probability measure on R^{2n}. It follows that one can "reduce" the state space of the Weyl algebra by altering the collection of quantum mechanical observables so that all states are ones whose classical limit is physical

    The classical limit of a state on the Weyl algebra

    Get PDF
    This paper considers states on the Weyl algebra of the canonical commutation relations over the phase space R^{2n}. We show that a state is regular iff its classical limit is a countably additive Borel probability measure on R^{2n}. It follows that one can "reduce" the state space of the Weyl algebra by altering the collection of quantum mechanical observables so that all states are ones whose classical limit is physical

    The Status of Scaling Limits as Approximations in Quantum Theories

    Get PDF
    This paper attempts to make sense of a notion of ``approximation on certain scales'' in physical theories. I use this notion to understand the classical limit of ordinary quantum mechanics as a kind of scaling limit, showing that the mathematical tools of strict quantization allow one to make the notion of approximation precise. I then compare this example with the scaling limits involved in renormalization procedures for effective field theories. I argue that one does not yet have the mathematical tools to make a notion of ``approximation on certain scales" precise in extant mathematical formulations of effective field theories. This provides guidance on the kind of further work that is needed for an adequate interpretation of quantum field theory

    On the Choice of Algebra for Quantization

    Get PDF
    In this paper, I examine the relationship between physical quantities and physical states in quantum theories. I argue against the claim made by Arageorgis (1995) that the approach to interpreting quantum theories known as Algebraic Imperialism allows for "too many states". I prove a result establishing that the Algebraic Imperialist has very general resources that she can employ to change her abstract algebra of quantities in order to rule out unphysical states

    The classical limit of a state on the Weyl algebra

    Get PDF
    This paper considers states on the Weyl algebra of the canonical commutation relations over the phase space R^{2n}. We show that a state is regular iff its classical limit is a countably additive Borel probability measure on R^{2n}. It follows that one can "reduce" the state space of the Weyl algebra by altering the collection of quantum mechanical observables so that all states are ones whose classical limit is physical

    The classical limit of a state on the Weyl algebra

    Get PDF
    This paper considers states on the Weyl algebra of the canonical commutation relations over the phase space R^{2n}. We show that a state is regular iff its classical limit is a countably additive Borel probability measure on R^{2n}. It follows that one can "reduce" the state space of the Weyl algebra by altering the collection of quantum mechanical observables so that all states are ones whose classical limit is physical

    The classical limit of a state on the Weyl algebra

    Get PDF
    This paper considers states on the Weyl algebra of the canonical commutation relations over the phase space R^{2n}. We show that a state is regular iff its classical limit is a countably additive Borel probability measure on R^{2n}. It follows that one can "reduce" the state space of the Weyl algebra by altering the collection of quantum mechanical observables so that all states are ones whose classical limit is physical
    corecore