27 research outputs found

    Medications and patient safety in the trauma setting: a systematic review

    Get PDF
    Abstract Background Medication errors account for the most common adverse events and a significant cause of mortality in the USA. The Joint Commission has required medication reconciliation since 2006. We aimed to survey the literature and determine the challenges and effectiveness of medication reconciliation in the trauma patient population. Materials and methods We conducted a systematic review of the literature to determine the effectiveness of medication reconciliation in trauma patients. English language articles were retrieved from PubMed/Medline, CINAHL, and Cochrane Review databases with search terms “trauma OR injury, AND medication reconciliation OR med rec OR med rek, AND effectiveness OR errors OR intervention OR improvements.” Results The search resulted in 82 articles. After screening for relevance and duplicates, the 43 remaining were further reviewed, and only four articles, which presented results on medication reconciliation in 3041 trauma patients, were included. Two were retrospective and two were prospective. Two showed only 4% accuracy at time of admission with 48% of medication reconciliations having at least one medication discrepancy. There were major differences across the studies prohibiting comparative statistical analysis. Conclusions Trauma medication reconciliation is important because of the potential for adverse outcomes given the emergent nature of the illness. The few articles published at this time on medication reconciliation in trauma suggest poor accuracy. Numerous strategies have been implemented in general medicine to improve its accuracy, but these have not yet been studied in trauma. This topic is an important but unrecognized area of research in this field

    Pathological Computed Tomography Features Associated with Adverse Outcomes after Mild Traumatic Brain Injury: A TRACK-TBI Study with External Validation in CENTER-TBI

    No full text
    Importance: A head computed tomography (CT) with positive results for acute intracranial hemorrhage is the gold-standard diagnostic biomarker for acute traumatic brain injury (TBI). In moderate to severe TBI (Glasgow Coma Scale [GCS] scores 3-12), some CT features have been shown to be associated with outcomes. In mild TBI (mTBI; GCS scores 13-15), distribution and co-occurrence of pathological CT features and their prognostic importance are not well understood. Objective: To identify pathological CT features associated with adverse outcomes after mTBI. Design, Setting, and Participants: The longitudinal, observational Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study enrolled patients with TBI, including those 17 years and older with GCS scores of 13 to 15 who presented to emergency departments at 18 US level 1 trauma centers between February 26, 2014, and August 8, 2018, and underwent head CT imaging within 24 hours of TBI. Evaluations of CT imaging used TBI Common Data Elements. Glasgow Outcome Scale-Extended (GOSE) scores were assessed at 2 weeks and 3, 6, and 12 months postinjury. External validation of results was performed via the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. Data analyses were completed from February 2020 to February 2021. Exposures: Acute nonpenetrating head trauma. Main Outcomes and Measures: Frequency, co-occurrence, and clustering of CT features; incomplete recovery (GOSE scores <8 vs 8); and an unfavorable outcome (GOSE scores <5 vs ≥5) at 2 weeks and 3, 6, and 12 months. Results: In 1935 patients with mTBI (mean [SD] age, 41.5 [17.6] years; 1286 men [66.5%]) in the TRACK-TBI cohort and 2594 patients with mTBI (mean [SD] age, 51.8 [20.3] years; 1658 men [63.9%]) in an external validation cohort, hierarchical cluster analysis identified 3 major clusters of CT features: contusion, subarachnoid hemorrhage, and/or subdural hematoma; intraventricular and/or petechial hemorrhage; and epidural hematoma. Contusion, subarachnoid hemorrhage, and/or subdural hematoma features were associated with incomplete recovery (odds ratios [ORs] for GOSE scores <8 at 1 year: TRACK-TBI, 1.80 [95% CI, 1.39-2.33]; CENTER-TBI, 2.73 [95% CI, 2.18-3.41]) and greater degrees of unfavorable outcomes (ORs for GOSE scores <5 at 1 year: TRACK-TBI, 3.23 [95% CI, 1.59-6.58]; CENTER-TBI, 1.68 [95% CI, 1.13-2.49]) out to 12 months after injury, but epidural hematoma was not. Intraventricular and/or petechial hemorrhage was associated with greater degrees of unfavorable outcomes up to 12 months after injury (eg, OR for GOSE scores <5 at 1 year in TRACK-TBI: 3.47 [95% CI, 1.66-7.26]). Some CT features were more strongly associated with outcomes than previously validated variables (eg, ORs for GOSE scores <5 at 1 year in TRACK-TBI: neuropsychiatric history, 1.43 [95% CI.98-2.10] vs contusion, subarachnoid hemorrhage, and/or subdural hematoma, 3.23 [95% CI 1.59-6.58]). Findings were externally validated in 2594 patients with mTBI enrolled in the CENTER-TBI study. Conclusions and Relevance: In this study, pathological CT features carried different prognostic implications after mTBI to 1 year postinjury. Some patterns of injury were associated with worse outcomes than others. These results support that patients with mTBI and these CT features need TBI-specific education and systematic follow-up.
    corecore