130 research outputs found

    Introduction to Protein Structure Prediction

    Get PDF
    This chapter gives a graceful introduction to problem of protein three- dimensional structure prediction, and focuses on how to make structural sense out of a single input sequence with unknown structure, the 'query' or 'target' sequence. We give an overview of the different classes of modelling techniques, notably template-based and template free. We also discuss the way in which structural predictions are validated within the global com- munity, and elaborate on the extent to which predicted structures may be trusted and used in practice. Finally we discuss whether the concept of a sin- gle fold pertaining to a protein structure is sustainable given recent insights. In short, we conclude that the general protein three-dimensional structure prediction problem remains unsolved, especially if we desire quantitative predictions. However, if a homologous structural template is available in the PDB model or reasonable to high accuracy may be generated

    Preface to Introduction to Structural Bioinformatics

    Get PDF
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics

    Preface to Introduction to Structural Bioinformatics

    Get PDF

    The meaning of alignment: lessons from structural diversity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein structural alignment provides a fundamental basis for deriving principles of functional and evolutionary relationships. It is routinely used for structural classification and functional characterization of proteins and for the construction of sequence alignment benchmarks. However, the available techniques do not fully consider the implications of protein structural diversity and typically generate a single alignment between sequences.</p> <p>Results</p> <p>We have taken alternative protein crystal structures and generated simulation snapshots to explicitly investigate the impact of structural changes on the alignments. We show that structural diversity has a significant effect on structural alignment. Moreover, we observe alignment inconsistencies even for modest spatial divergence, implying that the biological interpretation of alignments is less straightforward than commonly assumed. A salient example is the GroES 'mobile loop' where sub-Ã…ngstrom variations give rise to contradictory sequence alignments.</p> <p>Conclusion</p> <p>A comprehensive treatment of ambiguous alignment regions is crucial for further development of structural alignment applications and for the representation of alignments in general. For this purpose we have developed an on-line database containing our data and new ways of visualizing alignment inconsistencies, which can be found at <url>http://www.ibi.vu.nl/databases/stralivari</url>.</p

    Strategies for protein structure model generation

    Get PDF
    This chapter deals with approaches for protein three-dimensional structure prediction, starting out from a single input sequence with unknown struc- ture, the 'query' or 'target' sequence. Both template based and template free modelling techniques are treated, and how resulting structural models may be selected and refined. We give a concrete flowchart for how to de- cide which modelling strategy is best suited in particular circumstances, and which steps need to be taken in each strategy. Notably, the ability to locate a suitable structural template by homology or fold recognition is crucial; without this models will be of low quality at best. With a template avail- able, the quality of the query-template alignment crucially determines the model quality. We also discuss how other, courser, experimental data may be incorporated in the modelling process to alleviate the problem of missing template structures. Finally, we discuss measures to predict the quality of models generated

    Data Resources for Structural Bioinformatics

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. Structural bioinformatics involves a variety of computational methods, all of which require input data. Typical inputs include protein structures and sequences, which are usually retrieved from a public or private database. This chapter introduces several key resources that make such data available, as well as a handful of tools that derive additional information from experimentally determined or computationally predicted protein structures and sequences.Comment: editorial responsability: Sanne Abeln, K. Anton Feenstra, Halima Mouhib. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapter

    Data Resources for Structural Bioinformatics

    Get PDF
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation &amp; dynamics. Structural bioinformatics involves a variety of computational methods, all of which require input data. Typical inputs include protein structures and sequences, which are usually retrieved from a public or private database. This chapter introduces several key resources that make such data available, as well as a handful of tools that derive additional information from experimentally determined or computationally predicted protein structures and sequences

    Structure Alignment

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. The Protein DataBank (PDB) contains a wealth of structural information. In order to investigate the similarity between different proteins in this database, one can compare the primary sequence through pairwise alignment and calculate the sequence identity (or similarity) over the two sequences. This strategy will work particularly well if the proteins you want to compare are close homologs. However, in this chapter we will explain that a structural comparison through structural alignment will give you much more valuable information, that allows you to investigate similarities between proteins that cannot be discovered by comparing the sequences alone.Comment: editorial responsability: K. Anton Feenstra, Sanne Abeln. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapter

    Structure Alignment

    Get PDF
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation &amp; dynamics. The Protein DataBank (PDB) contains a wealth of structural information. In order to investigate the similarity between different proteins in this database, one can compare the primary sequence through pairwise alignment and calculate the sequence identity (or similarity) over the two sequences. This strategy will work particularly well if the proteins you want to compare are close homologs. However, in this chapter we will explain that a structural comparison through structural alignment will give you much more valuable information, that allows you to investigate similarities between proteins that cannot be discovered by comparing the sequences alone
    • …
    corecore