3,954 research outputs found
Gaussian potentials facilitate access to quantum Hall states in rotating Bose gases
Through exact numerical diagonalization for small numbers of atoms, we show
that it is possible to access quantum Hall states in harmonically confined Bose
gases at rotation frequencies well below the centrifugal limit by applying a
repulsive Gaussian potential at the trap center. The main idea is to reduce or
eliminate the effective trapping frequency in regions where the particle
density is appreciable. The critical rotation frequency required to obtain the
bosonic Laughlin state can be fixed at an experimentally accessible value by
choosing an applied Gaussian whose amplitude increases linearly with the number
of atoms while its width increases as the square root.Comment: 4 pages, 4 figure
Dichotomy for tree-structured trigraph list homomorphism problems
Trigraph list homomorphism problems (also known as list matrix partition
problems) have generated recent interest, partly because there are concrete
problems that are not known to be polynomial time solvable or NP-complete. Thus
while digraph list homomorphism problems enjoy dichotomy (each problem is
NP-complete or polynomial time solvable), such dichotomy is not necessarily
expected for trigraph list homomorphism problems. However, in this paper, we
identify a large class of trigraphs for which list homomorphism problems do
exhibit a dichotomy. They consist of trigraphs with a tree-like structure, and,
in particular, include all trigraphs whose underlying graphs are trees. In
fact, we show that for these tree-like trigraphs, the trigraph list
homomorphism problem is polynomially equivalent to a related digraph list
homomorphism problem. We also describe a few examples illustrating that our
conditions defining tree-like trigraphs are not unnatural, as relaxing them may
lead to harder problems
The Role of opinion leaders in the diffusion of new knowledge: the case of integrated pest management
The paper reviews the literature on the characteristics and impact of opinion leaders on the diffusion of new knowledge, concluding that there is no clear evidence on whether opinion leaders are more effective if they are similar in socio-economic attributes to the other farmers rather than superior to would-be followers. A multivariate analysis of the changes in integrated pest man- agement knowledge in Indonesia among follower farmers over the period 199198 indicates that opinion leaders who are superior to followers, but not excessively so, are more effective in transmit- ting knowledge. Excessive socio-economic distance is shown to reduce the effectiveness of diffusion. The paper then derives operational implications of the empirical results
Molecular dynamics study of solvation effects on acid dissociation in aprotic media
Acid ionization in aprotic media is studied using Molecular Dynamics
techniques. In particular, models for HCl ionization in acetonitrile and
dimethylsulfoxide are investigated. The proton is treated quantum mechanically
using Feynman path integral methods and the remaining molecules are treated
classically. Quantum effects are shown to be essential for the proper treatment
of the ionization. The potential of mean force is computed as a function of the
ion pair separation and the local solvent structure is examined. The computed
dissociation constants in both solvents differ by several orders of magnitude
which are in reasonable agreement with experimental results. Solvent separated
ion pairs are found to exist in dimethylsulfoxide but not in acetonitrile.
Dissociation mechanisms in small clusters are also investigated. Solvent
separated ion pairs persist even in aggregates composed of rather few
molecules, for instance, as few as thirty molecules. For smaller clusters or
for large ion pair separations cluster finite-size effects come into play in a
significant fashion.Comment: Plain LaTeX. To appear in JCP(March 15). Mpeg simulations available
at http://www.chem.utoronto.ca/staff/REK/Videos/clusters/clusters.htm
Early-type galaxies in the Chandra COSMOS Survey
We study a sample of 69 X-ray detected Early Type Galaxies (ETGs), selected
from the Chandra COSMOS survey, to explore the relation between the X-ray
luminosity of hot gaseous halos (L_X, gas) and the integrated stellar
luminosity (L_K) of the galaxies, in a range of redshift extending out to
z=1.5. In the local universe a tight steep relationship has been stablished
between these two quantities (L_X,gas~ L_K^4.5) suggesting the presence of
largely virialized halos in X-ray luminous systems. We use well established
relations from the study of local universe ETGs, together with the expected
evolution of the X-ray emission, to subtract the contribution of low mass X-ray
binary populations (LMXBs) from the X-ray luminosity of our sample. Our
selection minimizes the presence of active galactic nuclei (AGN), yielding a
sample representative of normal passive COSMOS ETGs; therefore the resulting
luminosity should be representative of gaseous halos, although we cannot
exclude other sources such as obscured AGN, or enhanced X-ray emission
connected with embedded star formation in the higher z galaxies. We find that
most of the galaxies with estimated L_X<10^42 erg/s and z<0.55 follow the
L_X,gas- L_K relation of local universe ETGs. For these galaxies, the
gravitational mass can be estimated with a certain degree of confidence from
the local virial relation. However, the more luminous (10^42<L_X<10^43.5 erg/s)
and distant galaxies present significantly larger scatter; these galaxies also
tend to have younger stellar ages. The divergence from the local L_X,gas - L_K
relation in these galaxies implies significantly enhanced X-ray emission, up to
a factor of 100 larger than predicted from the local relation. We discuss the
implications of this result for the presence of hidden AGN, and the evolution
of hot halos, in the presence of nuclear and star formation feedback.Comment: 29 pages, 10 figures, accepted for publication on ApJ on May 27 201
Topological Entropy of Quantum Hall States in Rotating Bose Gases
Through exact numerical diagonalization, the von Neumann entropy is
calculated for the Laughlin and Pfaffian quantum Hall states in rotating
interacting Bose gases at zero temperature in the lowest Landau level limit.
The particles comprising the states are indistinguishable, so the required
spatial bipartitioning is effected by tracing over a subset of single-particle
orbitals. The topological entropy is then extracted through a finite-size
scaling analysis. The results for the Laughlin and the Pfaffian states agree
with the expected values of and , respectively.Comment: 4 pages, 4 figure
Testing equivalence of pure quantum states and graph states under SLOCC
A set of necessary and sufficient conditions are derived for the equivalence
of an arbitrary pure state and a graph state on n qubits under stochastic local
operations and classical communication (SLOCC), using the stabilizer formalism.
Because all stabilizer states are equivalent to a graph state by local unitary
transformations, these conditions constitute a classical algorithm for the
determination of SLOCC-equivalence of pure states and stabilizer states. This
algorithm provides a distinct advantage over the direct solution of the
SLOCC-equivalence condition for an unknown invertible local operator S, as it
usually allows for easy detection of states that are not SLOCC-equivalent to
graph states.Comment: 9 pages, to appear in International Journal of Quantum Information;
Minor typos corrected, updated references
- …