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a b s t r a c t

Trigraph list homomorphism problems, also known as list matrix partition problems,
generalize graph list colouring and digraph list homomorphism problems. While digraph
list homomorphism problems enjoy a dichotomy (each problem is NP-complete or
polynomial time solvable), such dichotomy is not necessarily expected for trigraph list
homomorphism problems, and in the few cases where dichotomy has been proved, for
small trigraphs, the progress has been slow.

In this paper, we prove dichotomy for trigraph list homomorphism problems where
the underlying graph of the trigraph is a tree. In fact, we show that for these trigraphs the
trigraph list homomorphism problem is polynomially equivalent to a related digraph list
homomorphism problem. The result can be extended to a larger class of trigraphs, and we
illustrate the extension on trigraph cycles.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A trigraph H consists of a set V = V (H) of vertices, and two disjoint sets of directed edges on V—the set of weak edges
W (H) ⊆ V × V , and the set of strong edges S(H) ⊆ V × V . If both edge sets W (H), S(H), viewed as relations on V , are
symmetric, we have a symmetric, or undirected trigraph. A weak (respectively strong) edge vv is called a weak (respectively
strong) loop at v.

The adjacency matrix of a trigraph H , with respect to an enumeration v1, v2, . . . , vn of its vertices, is the n × n matrix M
over 0, 1, ∗, in which Mi,j = 0 if vivj is not an edge, Mi,j = ∗ if vivj is a weak edge, and Mi,j = 1 if vivj is a strong edge. Note
that a trigraph H is symmetric if and only if its adjacency matrix is symmetric.

We consider the class of digraphs to be included in the class of trigraphs by viewing each digraph H as a trigraph with
the same vertex set V (H), and with the weak edge set W (H) = E(H) and strong edge set S(H) = ∅. Conversely, if H is a
trigraph, the associated digraph ofH is the digraphwith the same vertex setV (H), andwith the edge set E(H) = W (H)∪S(H).
Moreover, the underlying graph of the trigraph H is the underlying graph of the associated digraph, and the symmetric graph
of the trigraph H is the symmetric graph of the associated digraph. To be specific, xy is an edge of the underlying graph of H
just if xy ∈ W (H) ∪ S(H) or yx ∈ W (H) ∪ S(H), and xy is an edge of the symmetric graph of H just if xy ∈ W (H) ∪ S(H) and
yx ∈ W (H)∪S(H). These conventions allowus to extend the usual graph and digraph terminology to trigraphs.We speak, for
instance, of adjacent vertices, components, neighbours, cutpoints, or bridges of a trigraphH , meaning the corresponding notions
in the associated digraph of H , or in its underlying graph; and we speak of symmetric edges, symmetric neighbours, etc. in a
trigraph H , meaning the edges, neighbours, etc., in the symmetric graph of H . When we speak of a subgraph of a trigraph H ,
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we mean a trigraph H ′ with V (H ′) ⊆ V (H),W (H ′) ⊆ W (H), and S(H ′) ⊆ S(H). If W (H ′) = W (H) ∩ (V (H ′) × V (H ′)) and
S(H ′) = S(H) ∩ (V (H ′) × V (H ′)), we say that H ′ is the subgraph of H induced on V (H ′).

Let G be a digraph and H a trigraph. A homomorphism of G to H is a mapping f : V (G) → V (H) such that the following
two conditions are satisfied for each u ≠ v:

– if uv ∈ E(G) then f (u)f (v) ∈ W (H) ∪ S(H);
– if uv ∉ E(G) then f (u)f (v) ∉ S(H).

In other words, edges of G must map to either weak or strong edges of H , and non-edges of G must map to either non-
edges or weak edges of H .

If each vertex v of the digraph G has a list L(v) ⊆ V (H), then a list homomorphism of G to H , with respect to the lists L (or
respecting the lists L), is a homomorphism f ofG toH such that f (v) ∈ L(v) for all v ∈ V (G). Following standard practice [19],
we also call a homomorphism of G to H an H-colouring of G, and a list homomorphism of G to H (with respect to the lists L)
a list H-colouring of G (with respect to L).

Suppose H is a fixed trigraph. The H-colouring problem HOM(H) has as instances digraphs G, and asks whether or not G
admits an H-colouring. The list H-colouring problem L-HOM(H) has as instances digraphs G with lists L, and asks whether
or not G admits a list H-colouring with respect to L. As noted earlier, H could be a digraph, viewed as a trigraph (with
W (H) = E(H), S(H) = ∅). Digraph homomorphism and list homomorphism problems have recently been of much
interest [19]. If necessary, we will emphasize the distinction between trigraph list homomorphism problems and digraph
list homomorphism problems, depending on whether H is a trigraph or a digraph respectively, i.e., whether H has any
strong edges or not. However, note that the input G is always a digraph. We also note that loops in G are not considered in
the definition of a trigraph homomorphism, and we assume throughout that G is irreflexive (has no loops).

For a fixed trigraph H , the list H-colouring problem L-HOM(H) concerns the existence of vertex partitions of the input
digraphs G. For instance, if H is the undirected trigraph with V (H) = {0, 1}, with a strong loop at 1 and a weak edge joining
0 and 1, then anH-colouring of G is precisely a partition of V (G) into a clique and an independent set. Thus G isH-colourable
if and only if G is a split graph [16]. Many graph partition problems, especially those arising from the theory of perfect
graphs, can be formulated as trigraph homomorphism (or list homomorphism) problems; this is discussed in detail in [9].
Equivalently, all these problems can be described in terms of the adjacency matrix of the trigraph, in the language of matrix
partitions and list partitions (see [2,6,7,9–11,13,14,17]). In this paper it will be more convenient to emphasize the trigraph
(rather than the matrix) terminology, since we are dealing with the structure of the trigraph H .

It is generally believed [15] that for each digraphH theH-colouring problemHOM(H) isNP-complete or polynomial time
solvable. (This is equivalent to the so-called CSP Dichotomy Conjecture of Feder and Vardi [15].) One special case forwhich the
dichotomy conjecture is known to hold is the case of undirected graphs (i.e., symmetric digraphs) H . In this case, HOM(H)
is polynomial time solvable if H has a loop or is bipartite and is NP-complete otherwise [18]. For the list homomorphism
problem L-HOM(H) for an undirected graphH , it is shown in [8] that L-HOM(H) is polynomial time solvable ifH is a so-called
bi-arc graph, and is NP-complete otherwise. Bi-arc graphs are a simultaneous generalization of reflexive interval graphs and
bipartite graphs whose complements are circular arc graphs [8]. For general constraint satisfaction problems with lists,
Bulatov [1] has proved that dichotomy holds. Most relevant for this paper is the following result explicitly classifying the
complexity of L-HOM(H) when H is a digraph.

Theorem 1 ([20]). Let H be a digraph.
If H contains a digraph asteroidal triple, then L-HOM(H) is NP-complete.
Otherwise L-HOM(H) is polynomial time solvable.

Digraph asteroidal triples are introduced in [20]. Their definition is a bit technical, and is not needed in this paper; they
are analogous to asteroidal triples in graphs [21]. The important fact is that testing whether a given digraph H contains a
digraph asteroidal triple can be performed in polynomial time [20].

By contrast, dichotomy is not known for trigraph list homomorphism problems. In [5], it is however proved that for each
trigraph H , the list H-colouring problem is NP-complete or quasi-polynomial (of complexity nO(logk n)). All list H-colouring
problems L-HOM(H) for trigraphs H with three or fewer vertices have been classified as NP-complete or polynomial time
solvable in [13]. For symmetric trigraphs with four vertices, this has been accomplished in [2], with the exception of a single
trigraph H; the corresponding problem has earned the name the stubborn problem. This problem has only recently been
established as polynomial time solvable [3]. Thus progress has been slow, even in showing the (polynomial/NP-complete)
dichotomy for trigraph list homomorphism problems for concrete small trigraphs; the general dichotomy for trigraph list
homomorphism problems seems quite uncertain.

In this paper, we prove dichotomy for the class of trigraph trees, i.e., for trigraphswhose underlying graph is a tree. (Partial
results along these lines first appeared in [22]; specifically, the case when the underlying graph is a path is solved there.) It
turns out that if H is a trigraph tree, then the list H-colouring problem is polynomially equivalent to a certain digraph list
colouring problem. Specifically, letH− be the digraph obtained fromH by removing each vertex with a strong loop, and each
strong edge xy, together with its converse yx, if yx ∈ W (H) ∪ S(H).

Theorem 2. Let H be a trigraph tree.
Then L-HOM(H) is polynomially equivalent to L-HOM(H−).
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Corollary 3. Let H be a trigraph tree.
Then L-HOM(H) is polynomial time solvable or NP-complete.

By the same techniques we can prove the dichotomy for a larger class of trigraphs. The details of such a proof can be
found in [12].

2. Trigraph trees

This and the following sections are devoted to a proof of Theorem 2. The proof is split into several steps. First, we prove
Lemma 4 which will allow us to deal with the cases where H contains a strong edge or a pair of adjacent strong loops.
Then we prove Lemma 5 which will help us handle the remaining cases of strong loops. Then the proof of the theorem is
presented. Below we briefly list other tools that will be used in the proof.

Let H be a trigraph tree, and let G with lists L(v), for v ∈ V (G), be an instance of L-HOM(H). We say that the instance
(G, L) is arc-consistent if for each u, v ∈ V (G) and each x ∈ L(u) there exists y ∈ L(v) such that:
(i) uv ∈ E(G) ⇒ xy ∈ W (H) ∪ S(H) and uv ∉ E(G) ⇒ xy ∉ S(H).
(ii) vu ∈ E(G) ⇒ yx ∈ W (H) ∪ S(H) and vu ∉ E(G) ⇒ yx ∉ S(H).

If the graph G is clear from the context, we just say that the lists L are arc-consistent.
If the lists L are not arc-consistent, we can in polynomial time modify L to arc-consistent lists L′ such that G has a

homomorphism to H that respects lists L if and only if G has a homomorphism to H that respects lists L′. This is similar
to enforcing arc-consistency in digraphs; cf. [2,9]. Thus, if convenient, we shall assume that the lists L are arc-consistent.
Note that if the lists L are arc-consistent, then either all lists L(v) are empty, or all are non-empty.

Let S be a subset of V (H). We say that the instance (G, L) contains representatives for S if for each x ∈ S, there exists
v ∈ V (G) with L(v) = {x}. We say that the instance (G, L) contains representatives if it contains representatives for V (H).
(We shall again refer to just lists L containing representatives if G is clear from the context.)

Note that if the instance (G, L) does not contain representatives, we can, in polynomial time, construct a collection of at
most (|V (G)| + 1)|V (H)| instances (G, Li), for i = 1 . . . t , that all contain representatives (for some subsets of V (H)), and have
the following additional property. G has a homomorphism to H that respects the lists L if and only if G has a homomorphism
to H that respects the lists Li for some i. This is again similar to the case of digraphs [2,9]. In particular, for each vertex
x ∈ V (H), we either select a vertex of G and set its list to {x}, or we remove x from all lists in G. The resulting lists Li contain
representatives for some subset Si of V (H). Moreover, the vertices of H − Si do not appear in Li. Therefore, the resulting
instance is, in fact, an instance of L-HOM(H ′), where H ′ is the subgraph of H induced on Si. For the problem L-HOM(H ′), the
lists Li contain representatives. Thus, if convenient, we shall assume that the lists L contain representatives.

Now, let x, y be adjacent vertices in H . Let Hxy denote the subgraph of H obtained by removing all edges between x and
y. Note that since H is a trigraph tree, Hxy is a trigraph with precisely two connected components, one containing x and one
containing y.

LetGxy denote the subgraph ofG obtained fromGby removing all edgesuvwith x ∈ L(u) and y ∈ L(v) if xy ∈ W (H)∪S(H),
and removing all edges uv with y ∈ L(u) and x ∈ L(v) if yx ∈ W (H) ∪ S(H).

We say that the instance (G, L) is subgraph-consistent on Hxy if for all connected components K of Hxy and C of Gxy, either
L(v) ∩ K = ∅ for all v ∈ C , or there is a homomorphism of C to K respecting the lists L. (We shall again say briefly that the
lists L are subgraph-consistent if the graph G is clear from the context.)

Again, if convenient, we may assume that the lists L are subgraph-consistent on Hxy. If they are not, we can make
them subgraph-consistent on Hxy by testing for each connected component K of Hxy and C of Gxy whether there exists a
homomorphism of C to K respecting the lists L. If this test fails for some choice of C and K , we remove the elements of
K from the lists of all vertices of C . The resulting instance of L-HOM(H) has a solution if and only if the original instance
does. To see this, note that if f is a homomorphism of G to H respecting the lists L, then f is also a homomorphism of Gxy

to Hxy. If f maps a vertex of C to a vertex of K , then every vertex of C is mapped to K by f , since homomorphisms map
connected components to connected components. Thus f restricted to C is a homomorphism of C to K respecting the lists
L, a contradiction.

Furthermore, if convenient, we may assume that the instance (G, L) is simultaneously arc-consistent, subgraph-
consistent on Hxy, and contains representatives. To see this, we first ensure that (G, L) contains representatives. Then we
alternately make the instance arc-consistent, and subgraph-consistent on Hxy, until the lists stop changing. (Since each step
only removes elements from lists, this requires at most |V (G)||V (H)| iterations.) The resulting lists are either arc-consistent,
subgraph-consistent onHxy, and contain representatives, or they are all empty. Note that if the list homomorphism problem
for Hxy is polynomially solvable, then the above procedure is polynomial.

3. Separable instances

The following tool will allows us to handle the cases with strong edges and adjacent strong loops. Let x, y be adjacent
vertices of H . Let A, B denote the two connected components of Hxy where x ∈ A and y ∈ B.

We say that the instance (G, L) is (or sometimes briefly just that the lists L are) separable on x, y if for all v ∈ V (G):
(∗) if x ∈ L(v), then L(v) ∩ A = {x} and if y ∈ L(v) then L(v) ∩ B = {y}.
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(In other words, the instance (G, L) is separable on x, y if no list in G contains x with another element of A, or y with
another element of B.)

Lemma 4. Let H be a trigraph tree. Let x, y be adjacent vertices in H. If L-HOM(Hxy) is polynomial time solvable, then L-HOM(H),
when restricted to instances (G, L) that are separable on x, y, is also polynomial time solvable.

Proof. We shall describe a polynomial algorithm for the restricted problem L-HOM(H). Let (G, L) be an instance of
L-HOM(H), separable on x, y. Assume that the instance is arc-consistent and subgraph-consistent on Hxy. Note that if is not,
then the procedure making it both arc-consistent and subgraph-consistent on Hxy cannot violate (∗), since it only removes
elements from lists.

Let H1 denote the subgraph of H induced on {x, y}. Let H0 denote the trigraph constructed from H1 by attaching a new
vertex a, with a weak loop, adjacent to x by a weak symmetric edge, and a new vertex b, with a weak loop, adjacent to y by
a weak symmetric edge. Let L0 denote the lists obtained from L by replacing each element of A \ {x} by a and each element
of B \ {y} by b. Let ϕ be the mapping of V (H) to V (H0) that maps x to x, y to y, each vertex of A \ {x} to a, and each vertex of
B \ {y} to b. Observe that if there is a homomorphism f of G to H respecting the lists L, then there is a homomorphism of G
to H0 respecting the lists L0, namely ϕ ◦ f . We show that the converse is also true.

(1) If there is a homomorphism of G to H0 respecting the lists L0, then there is also a homomorphism of G to H respecting the
lists L.

Suppose that g is a homomorphism of G to H0 respecting the lists L0. First, we observe the following property of g:

(2) If C is a component of Gxy, then either g(C) ⊆ {a, x} or g(C) ⊆ {y, b}.

By definition of Gxy, the homomorphism g cannot map an edge of Gxy to xy or yx. The image g(C) of a component C of Gxy is
connected, and hence cannot contain both a vertex in a, x and a vertex in b, y. This proves (2).

The property (2) ensures that there exists a homomorphism f of Gxy to Hxy, respecting the lists L, such that if g maps a
component C of Gxy to {a, x}, then f maps C to A; otherwise, f maps C to B. Note that such a homomorphism f is guaranteed
by our assumption that the lists L are subgraph-consistent on Hxy. We will show that f is, in fact, a homomorphism of G to
H which will prove (1).

First, we observe that g = ϕ ◦ f . Indeed, suppose that g(v) = x for some v ∈ V (G). Then x ∈ L0(v), and x ∈ L(v), which
according to (∗)means L(v)∩A = {x}. Further, by (2) and the definition of f , we have f (v) ∈ A. (In fact, the entire connected
component of Gxy containing v maps to A.) Therefore f (v) = x. Similarly, from g(v) = y, we conclude that f (v) = y. Now,
suppose that g(v) = a. It again follows that f (v) ∈ A, and also a ∈ L0(v), which implies that L(v) ∩ A \ {x} ≠ ∅. This yields,
by (∗), that x ∉ L(v), and hence, f (v) ∈ A \ {x}. Similarly, if g(v) = b, we obtain f (v) ∈ B \ {y}. It now follows from the
definition of ϕ that g = ϕ ◦ f .

Now, suppose that f is not a homomorphism of G to H . This means that there is an edge uv ∈ E(G) with f (u)f (v) ∉

W (H) ∪ S(H), or there is a non-edge uv ∉ E(G) with f (u)f (v) ∈ S(H). First, consider an edge uv ∈ E(G) with f (u)f (v)
∉ W (H) ∪ S(H). Since g is a homomorphism of G to H0, we have g(u)g(v) ∈ W (H0) ∪ S(H0). Also, f is a homomorphism of
Gxy toHxy. So, ifwehaduv ∈ E(Gxy), thenwewould have f (u)f (v) ∈ W (Hxy)∪S(Hxy)which implies f (u)f (v) ∈ W (H)∪S(H),
contrary to our assumption. Thus, uv ∈ E(G) \ E(Gxy). This implies, by the definition of Gxy, that x ∈ L(u) and y ∈ L(v), or
that y ∈ L(u) and x ∈ L(v).

We assume that x ∈ L(u) and y ∈ L(v). (The proof when y ∈ L(u) and x ∈ L(v) is similar.) From this, we conclude,
by (∗), that L(u) ∩ A = {x} and L(v) ∩ B = {y}. In particular, f (u) ∉ A \ {x} and f (v) ∉ B \ {y}, since f respects the
lists L. If f (u), f (v) ∈ {x, y}, then f (u) = g(u) and f (v) = g(v), since g = ϕ ◦ f . Hence, f (u)f (v) ∈ W (H) ∪ S(H) as
g(u)g(v) ∈ W (H0) ∪ S(H0). This contradicts our assumption; thus f maps at least one of u, v outside of {x, y}. Suppose that
f (u) ∉ {x, y}. This implies that f (u) ∈ B \ {y}, since f (u) ∉ A \ {x}. Hence, g(u) = b because g = ϕ ◦ f . Thus g(v) ∈ {y, b},
since y, b are the only neighbours of b in H0 and g(u)g(v) ∈ W (H0) ∪ S(H0). Hence, f (v) ∈ B which yields f (v) = y, since
f (v) ∉ B \ {y}. We now show that this contradicts the arc-consistency of the lists L. That is, we show that there does not
exist a w ∈ L(v) with f (u)w ∈ W (H) ∪ S(H). Otherwise, if such a w exists, we conclude that w ∈ B, because f (u) ∈ B \ {y}
and so f (u) has only neighbours in B. Therefore,w ∈ L(v)∩B and L(v)∩B = {y}, and hencew = y. This is a contradiction as
w = y = f (v) and f (u)f (v) ∉ W (H)∪S(H) by our assumption. So, no suchw exists andwemust conclude that f (u) ∉ B\{y}.
By a similar argument, we can also conclude that f (v) ∉ A \ {x}. Clearly, this is impossible, since we assume that f maps at
least one of u, v outside of {x, y}. This shows that no such edge uv exists.

Now, suppose that some uv ∉ E(G) has f (u)f (v) ∈ S(H). Note that uv ∉ E(Gxy) and hence, f (u)f (v) ∉ S(Hxy).
This implies that f (u), f (v) ∈ {x, y}, since f is a homomorphism of Gxy to Hxy and the only edges that we removed from
H to obtain Hxy were those between x and y. Since g = ϕ ◦ f , we conclude that f (u) = g(u) and f (v) = g(v). So,
g(u)g(v) = f (u)f (v) ∈ S(H) contradicting the fact that g is a homomorphism. This proves that f is indeed a homomorphism
of G to H which proves (1).

Now, from (1), we can conclude that to solve L-HOM(H) for the digraph G with lists L in polynomial time, it suffices to
find in polynomial time a homomorphism g of G to H0 that respects lists L0. We remark that (∗) implies that the lists L0 are
all of size at most two, namely {x, y}, {x, b}, {y, a}, {a, b}, and their subsets. Thus finding g can be reduced to an instance of
2SAT which can be solved in polynomial time. �
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4. Restricting strong loops

For the cases when H contains strong loops, we shall make use of the following lemma. It explains how to reduce every
instance of L-HOM(H) to a set of polynomially many restricted instances which are easier to handle.

We say that the instance (G, L) contains representatives for strong loops if for every vertex x of H with a strong loop, there
exists y ∈ V (H) and Qx ⊆ V (G) such that

(⋆) L(v) ⊆ {x, y} for all v ∈ Qx, and x ∉ L(v) for all v ∉ Qx.

Note that we allow y = x, and as before, if G is clear from the context, we say that the lists L contain representatives for
strong loops.

Lemma 5. Let H be a trigraph tree, and let (G, L) be an instance of L-HOM(H) that is arc-consistent and contains representatives.
Then there exists a polynomial collection of instances (G, Li), for i = 1 . . . t, each containing representatives for strong loops, with
the following additional property. G has a homomorphism to H that respects the lists L if and only if G has a homomorphism to H
that respects the lists Li for some i. Moreover, the collection can be computed in polynomial time.
Proof. Let G′ be the symmetric graph of G. (Recall that G′ has edge uv just if both uv and vu are inW (H) ∪ S(H).) Let G′′ be
a minimal chordal completion [23] of G′.

Suppose that f is a homomorphism of G to H respecting the lists L. Consider a vertex x of H with a strong loop. Then the
set X = f −1(x) induces a symmetric clique in G, that is, a clique in G′. It follows that there exists a maximal clique Q of G′′

such that f (v) = x implies v ∈ Q . (In other words, Q is a maximal clique of G′′ that contains X .)
Recall that the lists L contain representatives. So, if vx is a representative for x, i.e., L(vx) = {x}, then vx ∈ X , and, by the

arc-consistency of L, all vertices of X are symmetric neighbours of vx. We let Qx be the set of vertices consisting of vx and its
symmetric neighbours in Q , and conclude that X ⊆ Qx.

If X = Qx, then we let y = x, and conclude that f (v) ∈ {x, y} if v ∈ Qx, and f (v) ≠ x if v ∉ Qx. Otherwise, if X ≠ Qx, we
prove that f maps the vertices of Qx \ X to at most one connected component of H − x. To see this, suppose otherwise and
let u, v ∈ Qx \ X be such that f (u) and f (v) are in different connected components of H − x. If P is a path in G − X between
u and v, then the image of P under f is a walk in H , since f is a homomorphism. Thus, P contains a vertex w with f (w) = x.
So w ∈ X , contradicting the definition of P . Thus, u and v are in different connected components of G − X , and hence, in
different connected components of G′

− X . However, this is not possible, since u, v are adjacent in G′′ yet separated by the
clique X in G′. (No minimal chordal completion of a graph adds edges between vertices that are separated by a clique [23].)

We now let K be the (unique) connected component of H − x to which f maps the vertices of Qx \ X . Since H is a trigraph
tree, we let y be the unique neighbour of x in K . By the arc-consistency of L, we conclude that y is a symmetric neighbour of
x, and that f (v) = y for all v ∈ Qx \ X . Thus, f (v) ∈ {x, y} if v ∈ Qx, and f (v) ≠ x if v ∉ Qx.

It now follows that we can restrict the lists L(v) to {x, y} for all v ∈ Qx, remove x from the lists of v ∉ Qx, and the
homomorphism f still respects the modified lists L. Applying this argument for all strong loops of H , we eventually obtain
lists that contain representatives for strong loops, and the homomorphism f respects these lists.

It remains to show that there are only polynomially many different lists that we can obtain this way. We observe that
there are only linearly many choices for the clique Q , and thus, only linearly many choices for Qx. Further, there are only
constantly many choices for y and constantly many strong loops in H . Thus, the resulting collection of lists is of polynomial
size. Finally, we note that it can also be constructed in polynomial time, since a minimal chordal completion of a graph can
be computed in polynomial time [23].

That concludes the proof. �

This lemma allows us, if convenient, to assume that the lists L contain representatives for strong loops. Moreover, as
before, we may assume that the lists L simultaneously contain representatives, contain representatives for strong loops,
and are arc-consistent and subgraph-consistent on Hxy for some edge xy of H . This is possible, since making the lists
arc-consistent and subgraph-consistent on Hxy cannot violate (⋆) or remove representatives (assuming a homomorphism
respecting lists L exists). Further, if L-HOM(Hxy) is polynomially solvable, this procedure runs in polynomial time.

Now, we are finally ready to present a proof of Theorem 2.

5. Proof of Theorem 2

First, we observe that the connected components of H− are induced subgraphs of H , since H is a trigraph tree. So, if
L-HOM(H) is polynomial time solvable, then so is L-HOM(H−). To see this, note that if f is a homomorphism of G to H−, then
f maps each connected component C of G to some connected component K of H−. We consider all possible choices for K
and try to find a homomorphism of C to K respecting the lists L. We do this by restricting the lists of the vertices in C to K
and solving L-HOM(H) for this instance. This results in at most |V (G)||V (H)| instances of L-HOM(H).

Now, for the converse, we shall assume, by Theorem 1, that L-HOM(H−) is polynomial time solvable, and show how to
solve L-HOM(H) in polynomial time.

We proceed by induction on the number of strong edges and strong loops in H . If H contains no strong edge or strong
loop, then H = H− and there is nothing to prove. So, we assume that H contains at least one strong edge or strong loop.

First, assume that H contains a strong edge xy. Consider an instance of L-HOM(H), that is, a digraph Gwith lists L(v), for
v ∈ V (G). Note thatH−

= (Hxy)−. This implies that L-HOM(Hxy) is polynomially equivalent to L-HOM(H−) by induction, and
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consequently, L-HOM(Hxy) is polynomially solvable. This allows us to assume that the lists L are arc-consistent, subgraph-
consistent on Hxy, and contain representatives.

If for some (and hence all) v ∈ V (G), the list L(v) is empty, the instance has no list homomorphism to H . Otherwise,
we shall use Lemma 4 to solve L-HOM(H) for G with lists L. To do that, we need two observations. Firstly, we recall that
L-HOM(Hxy) is polynomially solvable. Secondly, we show that the lists L are separable on x, y. Let A and B be the two
components ofHxy where x ∈ A and y ∈ B. Suppose otherwise, and first let v be a vertex ofGwith {a, x} ⊆ L(v)where a ∈ A\

{x}. Recall that the lists L are arc-consistent and contain representatives. Let vy be a representative for y, i.e., L(vy) = {y}. We
note that the arc-consistency of L implies that vvy ∈ E(G), since x ∈ L(v) and xy ∈ S(H). But then, again by arc-consistency,
and the fact that ay ∉ W (H) ∪ S(H), we conclude that a ∉ L(v), a contradiction. The same argument proves the case when
y ∈ L(v). This shows that the lists L are separable on x, y. Therefore, using Lemma 4, we solve L-HOM(H) in polynomial time.

Next, suppose thatH has a strong loop, say on a vertex x, but has no strong edges. Consider an instance (G, L) of L-HOM(H),
and assume that it is arc-consistent, contains representatives, and contains representatives for strong loops (see Lemma 5).

Then there exists y ∈ V (H) and a set Qx ⊆ V (G) such that

(⋆) L(v) ⊆ {x, y} for all v ∈ Qx, and x ∉ L(v) for all v ∉ Qx.

In fact, by the proof of Lemma 5, we may assume that y is a symmetric neighbour of x, i.e., that xy, yx ∈ W (H) ∪ S(H).
Suppose that y = x. Then (⋆) implies that L(v) = {x} for all v ∈ Qx, and x ∉ L(v) for all v ∉ Qx. Thus G has a homomorphism
to H respecting the lists L if and only if G − Qx has a homomorphism to H − x respecting the lists L. Such a homomorphism
can be found in polynomial time by induction.

Thus, we may assume that y ≠ x. So, since we assume that H contains no strong edges, we have xy, yx ∈ W (H). Further,
since y ≠ x, we may assume that the lists L are, in addition, subgraph-consistent on Hxy. (See the discussion after Lemma 5.)
For this, note that L-HOM(Hxy) is polynomially solvable by induction, since (Hxy)− = H−.

There are three remaining cases:
Case 1: Suppose that y has no loop. If f is a homomorphism of G to H respecting the lists L, then, by (⋆), Qx partitions into a
symmetric clique and an independent set. Namely, the symmetric clique is formed by the vertices v ∈ Qx with f (v) = x and
the independent set comprises the vertices v ∈ Qx with f (v) = y. In other words, the subgraph of the underlying graph of G
induced on Qx is a split graph [16]. Note that one can test whether a graph is a split graph in linear time, and there are only
linearly many different partitions of a split graph into a clique and an independent set [16]. Thus, by trying all possibilities,
we consider each a partition of Qx into Q1 ∪ Q2 where Q1 induces a symmetric clique in G and Q2 is an independent set in G.
For this partition, we construct lists L′ by setting L′(v) = {x} for each v ∈ Q1, L′(v) = {y} for each v ∈ Q2, and L′(v) = L(v)
for v ∉ Qx. Afterwards, we make the lists L′ arc-consistent. It follows that G has a homomorphism to H respecting the lists
L if and only if G − Qx has a homomorphism to H − x respecting the lists L′ for some choice of the partition Q1 ∪ Q2. The
existence of such a homomorphism can again be decided in polynomial time by induction.
Case 2: Suppose that y has a weak loop. In this case, we proceed like in Lemma 4 and construct a homomorphism directly.
Recall that A, B are the two connected components of Hxy where x ∈ A and y ∈ B. We let f be a homomorphism of Gxy to Hxy

such that if C is a connected component of Gxy then f maps C to B if possible; otherwise, f maps C to A. We emphasize that
f only maps C to A if it is not possible to map it to B. Such a homomorphism is guaranteed by the subgraph-consistency of L.

We show that f is also a homomorphism of G to H . Suppose otherwise, and first, let uv be an edge of G with f (u)f (v) ∉

W (H) ∪ S(H). Clearly, uv ∉ E(Gxy) because f is a homomorphism of Gxy to Hxy. So, by the definition of Gxy, we conclude that
x ∈ L(u) and y ∈ L(v), or that y ∈ L(u) and x ∈ L(v).

We shall assume that x ∈ L(u) and y ∈ L(v). (The proof in the latter case is similar.) First, we conclude that f (v) ∈ B from
the subgraph-consistency of L, the definition of f , and the fact that y ∈ L(v). (In fact, f maps to B the whole component of
Gxy that contains v.) Also, since x ∈ L(u), we conclude that u ∈ Qx, and hence, L(u) ⊆ {x, y} by (⋆). Note that no vertex of
B\ {y} is adjacent to x. So, since f (v) ∈ B and y has a weak loop, we conclude, by arc-consistency, that yf (v) ∈ W (H)∪ S(H).
This yields f (u) ≠ y, and hence, f (u) = x since f respects the lists L. But now y ∉ L(u), since otherwise f (u) ∈ B by the
definition of f . So, L(u) = {x} and the arc-consistency of L implies that f (v) = y. (Recall that f (v) ∈ B and x is not adjacent
to any vertex in B \ {y}.) This, however, is a contradiction, since f (u)f (v) = xy and xy ∈ W (H).

So, no such edge uv exists. Therefore, there is uv ∉ E(G) with f (u)f (v) ∈ S(H). In particular, uv ∉ E(Gxy) since Gxy

is a subgraph of G. So, f (u)f (v) ∉ S(Hxy) since f is a homomorphism of Gxy to Hxy. However, S(Hxy) = S(H), and hence,
f (u)f (v) ∉ S(H), a contradiction.

This proves that f is indeed a homomorphism of G to H as claimed earlier, and we constructed it in polynomial time.
Case 3: Suppose that y has a strong loop. In this case, since the lists L contain representatives for strong loops, we have a set
Qy ⊆ V (G) and a vertex y′

∈ V (H) such that L(v) ⊆ {y, y′
} for v ∈ Qy, and y ∉ L(v) for v ∉ Qy.

If y′
≠ x, then we have L(v) ⊆ {x, y} ∩ {y, y′

} = {y} for all v ∈ Qx ∩ Qy, and L(v) = {x} for all v ∈ Qx \ Qy. Thus, by
arc-consistency of L, we may conclude that G has a homomorphism to H respecting the lists L if and only if G − Qx has a
homomorphism to H − x respecting the lists L. By induction, the existence of such a homomorphism can again be decided
in polynomial time.

Therefore, we may assume that y′
= x. We now again use Lemma 4. To do that, we observe that the vertices Qx ∪ Qy are

the only vertices with x or y on their lists, and L(v) ⊆ {x, y} for each v ∈ Qx ∪ Qy. Recall that A, B are the two connected
components of Hxy where x ∈ A and y ∈ B. So, if x ∈ L(v), then L(v)∩A = {x} since L(v) ⊆ {x, y}. Similarly, y ∈ L(v) implies
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Fig. 1. Example trigraph cycles H for which the complexity of L-HOM(H) is left open.

L(v) ∩ B = {y}. This shows that the lists L are separable on x, y. Further, L-HOM(Hxy) is decidable in polynomial time by
induction. Thus, using Lemma 4, we can solve L-HOM(H) for Gwith lists L in polynomial time.

That concludes the proof. �

6. Extensions

In the previous sections, we have focused on the list homorphism problems for trigraphs H whose underlying graph
is a tree. It turns out that the tools that we used for this characterization work in a more general context. In particular,
we can describe a more general class of trigraphs H for which an analogue of Theorem 2 is true. Unfortunately, the
description of these trigraphs is quite technical; the interested reader can find the definition and the proofs in our preprint
on http://arxiv.org/abs/1009.0358 [12].

Here, we only illustrate how this result applies to trigraph cycles, i.e., trigraphs H whose underlying graph is a cycle. We
assume that H contains at least one strong edge or loop; otherwise, it is covered by Theorem 1.

We say that a trigraph cycle H is a good cycle if H has at least one of the following:

(i) two strong edges, or
(ii) three consecutive strong loops, or
(iii) two pairs of consecutive strong loops, or
(iv) a strong edge and a distinct pair of consecutive strong loops, or
(v) two strong loops joined by a non-symmetric edge, or
(vi) a strong loop whose neighbours both have no loops, or
(vii) a strong loop having non-symmetric edges to both of its neighbours, or
(viii) a strong edge whose (at least) one endpoint has no loop.

Theorem 6 ([12]). Let H be a good cycle.
Then the problem L-HOM (H) is polynomial time solvable or NP-complete.

The theorem covers almost all cases of trigraph cycles. In Fig. 1, we list all the remaining cases of trigraph cycles not
covered by the above theorem. These are trigraph cycles H that contain vertices x, y such that either xy ∈ S(H) and
xx, yy ∈ W (H), or all of xx, xy, yx, and yy are edges (weak or strong) but at least one is strong. (Only three typical cases
of this are shown in the figure.) All other edges and loops not shown are weak. As far as we can see, the complexity of the
corresponding problems L-HOM(H) in these cases is open; but we have not explicitly considered these problems.

7. Conclusions

We have shown that dichotomy holds for trigraph trees. By combining Theorems 1 and 2, we obtain an algorithm that
decides, in time polynomial in the size of the trigraph H , whether L-HOM(H) is NP-complete or polynomial time solvable.

Certain generalizations are similarly handled in [12]; this includes most trigraph cycles, with the few exceptions
illustrated in Fig. 1. For small trigraphs, all list homomorphism problems for symmetric trigraphs with up to four vertices
have now been classified as polynomial time solvable or NP-complete by the combined efforts of [2–4,9].
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