2 research outputs found

    Proving the absence of unbounded polymers in rule-based models

    Get PDF
    International audienceRule-based languages, such as Kappa and BNGL, allow for the description of very combinatorial models of interactions between proteins. A huge (when not infinite) number of different kinds of bio-molecular compounds may arise due to proteins with multiple binding and phosphorylation sites. Knowing beforehand whether a model may involve an infinite number of different kinds of bio-molecular compounds is crucial for the modeller. On the first hand, having an infinite number of kinds of bio-molecular compounds is sometimes a hint for modelling flaws: forgetting to specify the conflicts among binding rules is a common mistake. On the second hand, it impacts the choice of the semantics for the models (among stochastic, differential, hybrid). In this paper, we introduce a data-structure to abstract the potential unbounded polymers that may be formed in a rule-based model. This data-structure is a graph, the nodes and the edges of which are labelled with patterns. By construction, every potentially unbounded polymer is associated to at least one cycle in that graph. This data-structure has two main advantages. Firstly, as opposed to site-graphs, one can reason about cycles without enumerating them (by the means of Tarjan's algorithm for detecting strongly connected components). Secondly, this data-structures may be combined easily with information coming from additional reachability analysis: the edges that are labelled with an overlap that is proved unreachable in the model may be safely discarded

    Évaluation du modèle évolutif par arête-markovienne pour reproduire la dynamique des réseaux mobiles

    No full text
    National audienceL’avènement des équipements mobiles a amené la communauté scientifique à étudier plus intensément les systèmes d’interactions formés par des entités en mouvement. Dans ce contexte, plusieurs modèles ont été proposés pour tenter de capturer les propriétés dynamiques de tels systèmes. Parmi ceux-ci, le modèle de graphes évolutifs à arêtes markoviennes est attirant en ce qu’il met en avant les dépendances temporelles dans un graphe dynamique. Cemodèle repose sur l’identification de deux paramètres régissant respectivement l’apparition et la disparition des liens dans le graphe et fait donc l’hypothèse que ces deux paramètres sont suffisants pour caractériser cette dynamique sur l’ensemble de la durée de vie du graphe. Dans cet article nous testons la pertinence de cette hypothèse par rapport à 6 jeux de données réelles. Pour se faire, nous avons étudié la fraction de liens créés et supprimés au cours du temps. Les résultats montrent que dans 5 cas sur les 6 étudiés, la répartition de ces fractions est hétérogène, ce qui contredit l’hypothèse faite par le modèle. De plus, nous avons regardé l’impact que le modèle markovien avait sur le degré moyen des nœuds au cours du temps. Il s’avère que même dans le jeu de données favorable au modèle, ce dernier échoue à rendre compte du comportement des réseaux dynamiques de façon satisfaisante
    corecore