37 research outputs found

    Role of Caustic Addition in Bitumen-Clay Interactions

    Get PDF
    Coating of bitumen by clays, known as slime coating, is detrimental to bitumen recovery from oil sands using the warm slurry extn. process. Sodium hydroxide (caustic) is added to the extn. process to balance many competing processing challenges, which include undesirable slime coating. The current research aims at understanding the role of caustic addn. in controlling interactions of bitumen with various types of model clays. The interaction potential was studied by quartz crystal microbalance with dissipation monitoring (QCM-D). After confirming the slime coating potential of montmorillonite clays on bitumen in the presence of calcium ions, the interaction of kaolinite and illite with bitumen was studied. To represent more closely the industrial applications, tailings water from bitumen extn. tests at different caustic dosage was used. At caustic dosage up to 0.5 wt % oil sands ore, a negligible coating of kaolinite on the bitumen was detd. However, at a lower level of caustic addn., illite was shown to attach to the bitumen, with the interaction potential decreasing with increasing caustic dosage. Increasing concn. of humic acids as a result of increasing caustic dosage was identified to limit the interaction potential of illite with bitumen. This fundamental study clearly shows that the crit. role of caustics in modulating interactions of clays with bitumen depends upon the type of clays. Thus, clay type was identified as a key operational variable

    Real-time QCM-D monitoring of cellular responses to different cytomorphic agents.

    No full text
    Quartz crystal microbalance with dissipation monitoring (QCM-D) is used for real-time in situ detection of cytoskeletal changes in live primary endothelial cells in response to different cytomorphic agents; namely, the surfactant Triton-X 100 (TX-100) and bacterial lipopolysaccharide (LPS). Reproducible dissipation versus frequency (Df) plots provide unique signatures of the interactions between endothelial cells and cytomorphic agents. While the QCM-D response for TX-100 can be described in two steps (changes in the osmotic pressure of the medium prior to observing the expected cell lysis), LPS results in a different single-phase signal. […] Observations obtained by QCM-D signals are confirmed by conducting fluorescence microscopy at the same time. Our results show that a fast (few minutes) sensing response can be obtained in situ and in real-time. The conclusions from this study suggest that QCM-D can potentially be used in biodetection for applications in drug screening tests and diagnosis

    Physicochemical characterization of engineered nanoparticles under physiological conditions: Effect of culture media components and particle surface coating

    No full text
    The use of engineered nanoparticles (ENPs) in commercial products has increased substantially over the last few years. Some research has been conducted in order to determine whether or not such materials are cytotoxic, but questions remain regarding the role that physiological media and sera constituents play in ENP aggregation or stabilization. In this study, several characterization methods were used to evaluate the particle size and surface potential of 6 ENPs suspended in a number of culture media and in the presence of different culture media constituents. Dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) were employed for size determinations. Results were interpreted on the basis of ENP surface potentials evaluated from particle electrophoretic mobilities (EPM). Measurements made after 24 h of incubation at 37 °C showed that the cell culture medium constituents had only moderate impact on the physicochemical properties of the ENP, although incubation in bovine serum albumin destabilized the colloidal system. In contrast, most of the serum proteins increased colloidal stabilization. Moreover, the type of ENP surface modification played a significant role in ENP behavior whereby the complexity of interactions between the ENPs and the medium components generally decreased with increasing complexity of the particle surface. This investigation emphasizes the importance of ENP characterization under conditions that are representative of cell culture media or physiological conditions for improved assessments of nanoparticle cytotoxicity

    Deposition of TiO2 Nanoparticles onto Silica Measured Using a Quartz Crystal Microbalance with Dissipation Monitoring

    No full text
    Titanium dioxide (TiO2) nanoparticles introduced into subsurface environments may lead to contamination of drinking water supplies and can act as colloidal carriers for sorbed contaminants. A model laboratory system was used to examine the influence of water chemistry on the physicochemical properties of TiO2 nanoparticles and their deposition. Deposition rates of TiO2 particles onto a silica surface were measured over a broad range of solution conditions (pH and ionic strength) using a quartz crystal microbalance with energy dissipation monitoring (QCM-D). Higher particle deposition rates were observed under favorable interaction conditions (i.e., in the presence of attractive electrostatic interactions) in comparison to unfavorable deposition conditions where electrostatic repulsion dominates particle−surface interactions. Nanoparticle sizes were characterized by fluorescence correlation spectroscopy (FCS), dynamic light scattering (DLS), and atomic force microscopy (AFM). These analyses confirmed the nanoscale of the system under study as well as the presence of TiO2 aggregates in some cases. TiO2 deposition behavior onto silica measured using QCM-D was generally found to be in qualitative agreement with the Derjaguin−Landau−Verwey−Overbeek (DLVO) theory of colloidal stability

    Real-time monitoring of airborne cat allergen using a QCM-based immunosensor

    No full text
    The purpose of this study was to demonstrate the potential of real-time monitoring of airborne cat allergen powder using quartz crystal microbalance (QCM) technology. Monoclonal antibodies of cat allergen (Fel d 1) were immobilized onto a gold-coated quartz crystal using a cysteamine self-assembled monolayer (SAM). The QCM responses exhibited negative frequency shifts characteristic of mass uptake onto the sensor surface when exposed to airborne cat allergen powder. The cat allergen powder was 0.01 wt% Fel d 1; therefore, antigen–antibody binding occurred despite potential interference from dust particles. The absolute frequency shift increased linearly (log–log, R2 = 0.968) over the immunosensor working range, from 5.2 ng/L to 1.6 × 105 ng/L. Selectivity of the immunosensor between the cat allergen and a test dust was confirmed using SEM images and antibody affinity was confirmed by challenging an Escherichia coli antibody-coated crystal with airborne cat allergen. Positive frequency shifts were observed with the QCM for both negative controls. The research demonstrates that immunosensors based on QCM technology may become a viable alternative to conventional methods of real-time monitoring of bioaerosols
    corecore